JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL SPECIAL RESIT 2015/2016 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: SMA 301
COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION I

EXAM VENUE:
DATE:

TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY)

a) Given $y=A \sin x+B \cos x$, where A and B and arbitrary constants, eliminate the arbitrary constants to form a differential equation hence state its order and degree.
(5 marks)
b) The rate of cooling of a body is proportional to the excess of its temperature above its surrounding $\theta^{\circ} \mathrm{C}$. A body cools from $85^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in 4.0 minutes at a surrounding temperature of $15^{\circ} \mathrm{C}$. Determine how long to the nearest second the body will take to cool to $55^{\circ} \mathrm{C}$.
c) Solve the differential equation below using an appropriate method

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+36 y=0 \tag{5marks}
\end{equation*}
$$

d) Using an appropriate method solve the differential equation $2 y y^{\prime \prime}=1+y^{\prime}$.
(5 marks)
e) Use the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=e^{2 x}$.
f) Solve the differential equation $(y-2 x-4) d y=(y+2 x-2) d x$

QUESTION TWO (20 marks)
a) By finding the integrating factor, find the general solution of the differential equation $\frac{\left(1-x^{2}\right)}{x} \frac{d y}{d x}+\frac{2 x^{2}-1}{x^{2}} y=x$ (Hint: Use partial fractions)
b) A resistance (R) of 100 ohms , an inductance (L) of 0.5 henry are connected in series with a battery of 20 volts(V). Find the current (i) in the circuit as a function of time(t) given that they are connected by the differential equation $R i+L \frac{d i}{d t}=V$.
c) Solve the differential equation below using any appropriate method

$$
\begin{equation*}
4 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+y=e^{x} \tag{5marks}
\end{equation*}
$$

QUESTION THREE

a) Consider a second order differential equation

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=F(x)
$$

Let $\mathrm{F}(\mathrm{x})=0$ and let $\mathrm{y}=\mathrm{U}$ and $\mathrm{y}=\mathrm{V}$, where U and V are functions of x be two solutions to the differential equation, then show that $y=(U+V)$ is also a solution.
b) Find the general solution of the differential equations
(i) $\left(x y-x^{2}\right) d y+y^{2} d x=0$
(ii) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=0$ (4 marks)
(iii) $\frac{d^{2} y}{d x^{2}}-36 y=2 \cos 4 x$

QUESTION FOUR

Use any appropriate method to solve each of the differential equations below
a) $\quad\left(2-9 x y^{2}\right) x d x+\left(4 y^{2}-6 x^{3}\right) y d y=0$ given that $y=4$ when $x=1$. (6 marks)
b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
(6 marks)
c) $\frac{d y}{d x}+\frac{x}{1-x^{2}} y=x \sqrt{y}$ (8 marks)

QUESTION FIVE

a) Detectives discovered a murder victim at 6.30 am and the body temperature of the victim was then $26^{\circ} \mathrm{C}$. After 30 minutes the police surgeon arrived and found the body temperature to be $23{ }^{\circ} \mathrm{C}$. If the air temperature was $16^{\circ} \mathrm{C}$ throughout and the normal body temperature is $37^{\circ} \mathrm{C}$. At what time did the police surgeon estimate that the crime occurred.
(10 marks)
b) Solve the differential equation $x y^{\prime \prime}=y^{\prime}+\left(y^{\prime}\right)^{3}$ given $x=1$ when $y=0$ and $x=2$ when $\frac{d y}{d x}=1$
(10 marks)

