JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS

SCHOOL OF HEALTH SCIENCES

DIPLOMA IN COMMUNITY HEALTH AND DEVELOPMENT

SMA2111: MATHEMATICS 1

April 2014

KISUMU LEARNING CENTRE

TIME 1HR 30MIN

This paper consists of FIVE Questions. Answer QUESTION ONE and any other TWO Questions.

QUESTION ONE (Compulsory)

(30 Marks)

a. Three sets P, Q and R are given as $P = \{13, 17, 20, 23, 25, 30, 35, 37, 39\}$.

$$Q=\{13,17, 19,23, 25, 27, 31,36,37\}$$
 and $R=\{17, 19, 20, 23, 25, 36, 37, 38\}$

Determine
$$(P \cap Q) \cup (Q \cap R)$$

(3 marks)

(3 Marks)

b. A function is defined as f(x) =

$$f(x) = \frac{3x^2 + 6x - 3}{2x + 20}$$
 Evaluate $f(3)$

(3marks)

c. Solve the quadratic equation given below using the factorization method.

$$5x^2 - 27 + 10 = 0$$

d. Prove the trigonometric identity below

$$(\sin_{\pi} - \sin_{\pi} \cos^2_{\pi} = \sin^3_{\pi}$$

e. Express the surd $\frac{2\sqrt{5} - 2\sqrt{3}}{10\sqrt{5} - 4\sqrt{3}}$ in its simplest form

(3 Marks)

- f. In a G.P, the third term is 48 while the 5th term is 768. Determine the sum of the first 10 terms. (3 Marks)
- g. Expand $(2x+3y)^5$

(3 Marks)

h. Solve the triangle whose dimensions are given as

$$a=4cm$$
, $b=8cm$, $c=7cm$

(5 marks)

i. Copy and complete the table below

Angle in degrees	27°		345°	
Angle in radians		3.142°		2.25 °
Sec				

(4 marks)

QUESTION TWO (15 MARKS)

- a. A function is defined as $f(x) = 5x^3 + 6x^2 10$ Evaluate i) f(0) ii) f(-3) iii f(4+h)
- b. Determine the inverse of the following functions

i)
$$g(t) = \sqrt{5t^2 - 16}$$

ii)
$$f(z) = 7z^3 - 7$$

c. Given that h(x) = 4x - 1 and $g(x) = 3x^2 + 5x + 7$ determine ii) $h \circ g$ iii) $g \circ h$ i. (6 Marks)

QUESTION THREE (15 MARKS)

a. A quadratic equation takes the general form $ax^2 + bx + c = 0$ where a, b and c are constants. Show that the equation has the two possible roots given by

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ or } x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 (7 marks)

- b. Solve the quadratic equation $6x^2 + 42x 12 = 0$ using the completing square method. (4 marks)
- c. Expand $(3x y)^6 (4 \text{ marks})$

QUESTION FOUR (15 MARKS)

a. The terms of an arithmetic sequence is given as $a, a+d, a+2d, a+3d+\dots+l$, where a is the first term, d the common difference and l is the last term. Show that the sum of the first nterms of the sequence is given as

$$S_n = \frac{n}{2}[a+l] \quad (7 \text{ marks})$$

- b. In an A.P the sum of the first two terms is 14 while the sum of the fifth and sixth terms is 62. Determine the 20^{th} term (4 marks)
- c. In a G.P, the third term is 48 while the 5th term is 768. Determine the sum of the first 10 terms. (4 marks)

QUESTION FIVE (15 MARKS)

- a. Define an angle of one radian hence show that 1 radian is equivalent to 53.29° (5 marks)
- b. Derive the sine formula (6 marks)
- c. Prove the trigonometric identity below

$$\sec^2 \pi \cos ec^2 \pi = \sec^2 \pi + \cos ec^2 \pi \tag{4 marks}$$