JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

MAY AUGUST 2013 SEMESTER UNIVERSITY EXAMINATION BACHELOR OF SCIENCE IN COMPUTER FORENSICS

SMA 3113: LOGICAL FUNCTIONS
a) Show that $(x+i)(x-i)$ is a factorization of $x^{2}+1$.
3 Marks
b) Find x and y in $\quad 3 x+y i=5 x+1+2 i$
4 Marks
c) "Mary will get a job if and only if she secures first class". Let p be "Mary gets a job" and q be Mary secures a first class.

Prove by constructing the truth table that;

$$
\sim(p \leftrightarrow q) \equiv \sim p \leftrightarrow q
$$

d) Convert the following binary numbers to their equivalent decimal numbers
i) 1011.101_{2}
ii) 0.0110_{2}
iii) 1010.1101_{2}
iv) 1110110_{2}
6 Marks
e) Simplify the Boolean function $\mathrm{F}(x, y, z)=\mathrm{S}(2,3,4,5)$ 6 Marks
f) Given the sets $A=\{a, b, c, d, e, f\} B=\{a, c, e, g, i, k\} \quad C=\{g, h, i, j, k\}$ Find
i)
AUB
ii) $A \cap B$
iii) $A \cap C$
6 Marks

QUESTION TWO (20 MARKS)

A sample of students had a mean age of 35 years with a standard deviation of 5 years. A student was randomly picked from a group of 200 students. Find the probability that the age of the student turned out to be as follows
i. Lying between 35 and $40 \quad 5$ Marks
ii. Lying between 30 and $40 \quad 3$ Marks
iii. Lying between 25 and $30 \quad 2$ Marks
iv. Lying beyond 45 yrs 4 Marks
v. Lying beyond 30 yrs 3 Marks
vi. Lying below 25 years 3 Marks

QUESTION THREE (20 MARKS)

250 members of a certain society have voted to elect a new chairman. Each member may vote for either one or two candidates. The candidate elected is the one who polls most votes

Three candidates $\mathrm{x}, \mathrm{y} \mathrm{z}$ stood for election and when the votes were counted, it was found that

- 59 voted for y only, 37 voted for z only
- 12 voted for x and $y, 14$ voted for x and z
- 147 voted for either x or y or both x and y but not for z
- 102 voted for y or z or both but not for x
i) How may voters did not vote

4 Marks
ii) How many voters voted for x only 4 Marks
iii) Who won the elections 2 Marks
b) In the design of orifice plate flowmeters, the volumetric flowrate, $\mathrm{Q}\left(m^{3} s^{-1}\right)$, is given by

$$
Q=C_{d} A_{0} \sqrt{\frac{2 g \Delta h}{1-A_{0}^{2} / A_{F}^{2}}}
$$

where Cd is a dimensionless discharge coefficient, $\mathrm{h}(\mathrm{m})$ is the head difference across the orifice plate and $\mathrm{Ao}\left(m^{2}\right)$ is the area of the orifice and $\mathrm{Ap}\left(m^{2}\right)$ is the area of the pipe.
(i) Rearrange the equation to solve for the area of the orifice, Ao, in terms of the other variables.
(ii) A volumetric flowrate of $100 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ passes through a 10 cm inside diameter pipe. Assuming a discharge coefficient of 0.6 , calculate the required orifice diameter, so that the head difference across the orifice plate is 200 mm .
c) Obtain the conjunctive normal form of the form (p $\Lambda q) v(p \Lambda q \Lambda r)$

3 Marks
3 Marks

QUESTION FOUR (20 MARKS)

Construct a network for the following statement;

b) Write 2163 in a;
i) Binary system 2 Marks
ii) hexadecimal system 2 Marks
c) Prove the following: i). $A+\bar{A} \cdot B=A+B$
ii) $A \cdot(\bar{A}+B)=A \cdot B$
iii) $(\mathrm{A}+\mathrm{B}) \cdot(\overline{\mathrm{A}}+\mathrm{C})=\mathrm{A} \cdot \mathrm{C}+\overline{\mathrm{A}} \cdot \mathrm{B}$
iv) $(\mathrm{A}+\mathrm{C}) \cdot(\overline{\mathrm{A}}+\mathrm{B})=\mathrm{A} \cdot \mathrm{B}+\overline{\mathrm{A}} \cdot \mathrm{C} \quad 12$ Marks

5. QUESTION FIVE(20 MARKS)

a) Prove the following identity: $(\mathrm{A} U \mathrm{~B}) \cap\left(\mathrm{AU} \mathrm{B}{ }^{\mathrm{c}}\right)=\mathrm{A} \quad 4$ Marks
b) Draw Venn diagrams showing:
$\begin{array}{lll}\text { i) } & (A \cup B)=(A \cup C) \text { but } B \neq C & 4 \text { Marks } \\ \text { ii) } & (A \cap B)=(A \cap C) \text { but } B \neq C & 4 \text { Marks }\end{array}$
c) Draw the logic circuit L with inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and output Y which corresponds to each Boolean expression:
i) $\mathrm{Y}=\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \quad$ 4 Marks
ii) $\mathrm{Y}=\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \quad$ 4 Marks

