

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL INFORMATICS AND INNOVATIVE SYSTEMS UNIVERSITY EXAMINATION FOR THE DEGREE OF SCIENCE COMPUTER SECURITY & FORENSICS 1ST YEAR 2ND SEMESTER 2013/2014 ACADEMIC YEAR

CENTRE: MAIN

COURSE CODE: IIT 3121

COURSE TITLE: DATA COMMUNICATION PRINCIPLES

EXAM VENUE: LR 2

EXAM SESSION: 11.30 – 1.30 PM

STREAM: BSc. Computer Security & Forensics

TIME: 2 HOURS

DATE: 9/12/2013

Instructions:

- **1.** Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question 1

a)	Using	diagram(s), Compare OSI Model and TCP/IP Model.	(8 Marks)
	(i)	Which layer of the OSI model ensures reliable, end-to-end communications?	(2 Marks)

- (ii) Which layer of the OSI model provides routing functionality? (2 Marks)
- (iii)Which layer of the OSI model translates the data from upper-layer protocols into electrical signals and places them on the network media? (2 Marks)
- b) How is the transmission of a single character differentiated from the transmission of the next character in asynchronous transmission? (2 Marks)
- c) Explain two reasons why most communication systems use serial mode as compared to parallel communication mode. (2 Marks)
- d) Briefly explain the difference between hub, bridge, switch and a router. Among the listed devices, which the device(s): (8 Marks)
- e) Any periodic signal can be represented as a sum of sinusoids, known as a Fourier series:1

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} [A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t)]$$

Given that fo = 1/T and A_0 is not equal to zero . Write equations which would be used to calculate the coefficients:

Ao	
An	
And	
Bn	(3 Marks)

- f) Define the following terms as used in Data Communication: (3 Marks)
 - I. Little endian
 - II. Asynchronous data transmission
 - III. Simplex Communication

Question 2

a)	Why is multiplexing so cost-effective?	(2	Marks)
b)	Explain how interference avoided by using frequency division multiplexing?	(3	Marks)
c)	Define the term echo cancellation as used in data Communication.	(3	Marks)
d)	What is the meaning of upstream and downstream with respect to subscriber lines	.(2	Marks)
e)	Explain how synchronous time division multiplexing (TDM) works.	(2	Marks)

- f) A character-interleaved time division multiplexer is used to combine the data streamsof a number of 110-bps asynchronous terminals for data transmission over a 2400-bpsdigital line. Each terminal sends asynchronous characters consisting of 7 data bits, 1 paritybit, 1 start bit, and 2 stop bits. Assume that one synchronization character is sentevery 19 data characters and, in addition, at least 3% of the line capacity is reserved forpulse stuffing to accommodate speed variations from the various terminals.
 - i. Determine the number of bits per character. (3 Marks)
 - ii. Determine the number of terminals that can be accommodated by the multiplexer. (3 Marks)

Question 3

- a) Explain five factors that can be used in evaluating or comparing the various digital-to-digital encoding techniques. (10 Marks)
- **b)** I) What is meant by differential encoding ? (2 Marks)
 - ii) Describe two multilevel binary digital-to-digital encoding techniques. (2 Marks)

iii)	Define biphase encodin	ng and describe two b	phase encoding technic	jues. (2 Marks)
	L	0		

- iv) Explain the function of scrambling in the context of digital-to-digital encoding techniques.
 (3 Marks)
- v) What function does a modem perform in a communication network ? (1 Mark)

Question 4

a)	How is the transmission of a single character differentiated from the transmission character in asynchronous transmission?	ion ofthe next (2 Marks)
b)	Explain one major disadvantage of asynchronous transmission?	(2 Marks)
c)	How is synchronization provided for synchronous transmission?	(3 Marks)
d)	Define a parity bit?	(2 Marks)
e)	What is the CRC?	(2 Marks)
f)	Why would you expect a CRC to detect more errors than a parity bit?	(2 Marks)
g)	List three different ways in which the CRC algorithm can be described (3 Marks)	
h) i)	In an (n, k) block ECC, what do n and k represent?	(2 Marks)
j)	What is the role of a DCE in a communication network	(2 Marks)

Question 5

- a) Explain Five requirements for effective communications over a data link network. (10 Marks)
- b) Define flow control. (2 Marks)
- **c)** Describe stop-and-wait flow control. (1 Marks)
- **d)** Explain two reasons for breaking a long data transmission up into a number of frames. . (2 Marks)

e) Describe sliding-window flow control.	
f) Define error control.	(1 Marks)
g) Explain two common ingredients for error control for a link control protocol.	(2 Marks)

QUESTION 6

- a) i) define data communication as used in data transmission (2 Marks)
- b) Differentiate between synchronous and asynchronous data transmission (4 Marks)
 - **c)** Identify the following communication channels and give an example of each of a communication device using this mode of communication

(6 Marks)

d) Explain four data transmission media .

(4 Marks)