

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION 2012/2013

1ST YEAR 1ST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE AND BIOLOGICAL SCIENCE

(SCHOOL BASED)

COURSE CODE: SCH 301

TITLE: CHEMICAL DYNAMICS & EQUILIBRIA

DATE: 5/5/2013 TIME: 9.00-11.00AM

DURATION: 2 HOURS

INSTRUCTIONS

- 1. Answer ALL questions in Section A
- 2. Answer ANY two Questions from Section B

Section A This section contains ONE COMPULSORY question

QUESTION 1 (Compulsory -30 marks)

- (10 marks) a. Briefly explain each of the following terms: i. First law of thermodynamics ii. The entropy iii. Adiabatic system iv. Chemical phase v. Triple point
 - vi. Gibbs free energy
 - vii. Chemical potential
 - viii. Molality
 - ix. Colligative properties
 - x. Osmotic pressure
- b. State the second law of thermodynamics (1 mark)
- c. Show that entropy is a state function
- d. In each of the following equations predict whether the reaction is accompanied by increase or decrease in disorder of the particles. In each case, explain your answer.

i.
$$2NH_3(g) \longrightarrow 3H_2(g) + N_2(g)$$
 (2
marks) (2

ii. NaCl(s)
$$\xrightarrow{\text{excess H}_2O(1)}$$
 Na⁺(aq) + Cl⁻(aq) (3 marks)

- e. State the phases rule and explain the terms
- f. Fig.1 shows a phase diagram for water. Study it and use it to answer the questions that follow.

Fig. 1: Phase diagram of water

- Identify the g.
 - i. Phases labelled Q, R and S respectively.
 - ii. boundary lines OA, OA', OB and OC

(3 marks)

(4 marks)

(3 marks) (4 marks)

Section B: This section contains FOUR questions. Answer ONLY TWO questions.

QUESTION 2 (Optional, 20 marks)

- a. The latent heat of vaporization of water at 100 °C and 1 atmosphere of pressure is 22.6 x 105 Kkg⁻¹. Calculate the change in entropy for the conversion of
 - i. 1 kg of water to steam at 100 °C (3 marks)
 - ii. 1 mol of water to steam at $100 \,^{\circ}$ C (3 marks)
- b. Using a heating curve to illustrate, calculate the entropy change when 1 mol of ice is heated from 250 K to 300 K assuming the heat capacity of water and ice to be 75.3 and 37.7 JK⁻¹ respectively and that the enthalpy of fusion of ice is 6.02 kJmol-1. (12 marks)
- c. Briefly comment on the values of entropy changes in the system while water is heated from 250 K to 300 K as in question 1 (b) above. (2marks)

[Total 20 marks]

QUESTION 3 (Optional, 20 marks)

- a. State the conditions of entropy and Gibbs free energy necessary for a state of equilibrium (2 marks)
- b. Briefly discuss the role of entropy and enthalpy in determining Gibbs free energy and, hence, the reaction spontaneity of a system (4 marks)
- c. For the reaction :

$$C(s) + 2H_2(g) \longrightarrow CH_4(g)$$

at 298 K, calculate G, given:

Substance	_e (kJmol ⁻¹)	_e (Jmol-1K-	
	Та́f	$1)^{\overline{s}i}$	
C(s)	0	5.7	
$\mathbf{H}_{2}\left(\mathbf{s}\right)$	0	130.6	
CH_4 (g)	-78.4	186.2	

(4 marks)

d. Given,
$$\left(\frac{\partial G}{\partial P}\right)_T = V$$
,

i. show that $\Delta G = nRT ln\left(\frac{P_2}{P_1}\right)$

Calculate the molar free energy of hydrogen gas at 10⁻⁵ atmospheres of pressure at 289 K and comment on the significance of the sign of the value of molar free energy. (4 marks)

[Total 20 marks]

QUESTION 4 (Optional, 20 marks)

- a. For a one-component system such as water, derive the Claussius-Clapeyron equation (10 mark)
- b. Sketch a phase diagram for sulphur and explain the various processes involved in transition from low temperature (298 K) to high temperatures (400 K). (10 marks)

[Total 20 marks]

(6 marks)

QUESTION 5 (Optional, 20 marks) The vapour pressure of carbon tetrachloride, CCL, and that of silicon tetrachloride, SiCL

a.	the vapour pressure of carbon tetrachloride, CCl_4 , and that of silicon tetrachloride, $SiCl_4$, at		
	25 °C are 114.9 mmHg and 238.3, mmHg respectively. Assuming ideal be	ehaviour, calculate:	
	i. The total vapour pressure of a mixture of equal weights o	f the two liquids.	
		(8 marks)	
	ii. The composition of the vapours of the mixture of CCl_4 are	nd SiCl ₄ at	
	equilibrium at 25 °C.	(4 marks)	
b.	For each of the following solutions calculate the boiling point elevations:		
	i. 1.0 molal aqueous solution of glucose $(C_6H_{12}O_6)$	(2	
	marks)		
	ii. 1.0 molal aqueous solution of sodium chloride (NaCl)	(2 marks)	
	iii. 1.0 molal aqueous solution of lithium carbonate (Li_2CO_3)	(2	
	marks).		
c.	Explain the differences, if any, in the values of the boiling point elevation	s among the three	
	solutions in QUESTION 5 Part (b) above	(2 marks)	
		[Total 20 marks]	

-END-