JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION 2012/2013

$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE EDUCATION WITH IT, BIOLOGICAL SCIENCES, PUBLIC HEALTH AND COMMUNITY DEVELOPMENT (REGULAR)

COURSE CODE: SCH 101/3111
TITLE: BASIC PHYSICAL CHEMISTRY
DATE: 23/4/2013
TIME: 9.00-11.00AM
DURATION: 2 HOURS

INSTRUCTIONS

1. Answer ALL questions in Section A
2. Answer ANY two Questions from Section B
3. Use illustrations where possible

Useful information

1 Faraday $=96500$ coulombs
Volume of molar mass of gas at s.t.p $=22.4 \mathrm{dm}^{3}=22400 \mathrm{~cm}^{3}$
Gas constant $=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

QUESTION 1

(a) With reference to any FIVE schools of thought, define the term 'Physical Chemistry.'(5 marks)
(b) Distinguish between each of the following pairs of terms:
(i) Isobar and Isotherm
(ii) Gas and reaction stoichiometry
(iii) Spontaneous and non-spontaneous reaction
(iv) Velocity constant and rate equation
(c) Give any FIVE postulates of the Kinetic theory.
($2^{11 / 2}$ marks)
(d) $707 \mathrm{~cm}^{3}$ of an unknown gas diffuses through a porous plug within the same time as it takes $250 \mathrm{~cm}^{3}$ of oxygen to diffuse under the same conditions of pressure and temperature. Calculate the relative molecular mass of the unknown gas. (Hint; RMM of $\mathrm{O}_{2}=32$).
(e) Briefly discuss any FIVE factors that can affect the rate of a chemical reaction

SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTIONEACH QUESTION CARRIES 20 MARKS

QUESTION 2

(a) Derive the ideal gas law.
(4 marks)
(b) The density of a gaseous compound was found to be $1.23 \mathrm{~g} \mathrm{~L}^{-1}$ at 330 k and 150Torr. What is the molar mass of the compound?
(c) State Dalton's law of partial pressures.
(d) The rate of decomposition of azomethane was studied by monitoring the partial pressure of the reactant as a function of time. The data obtained at $300^{\circ} \mathrm{C}$ are given below:

Time (s)	Partial pressure of azomethane $(\mathbf{m m H g})$
1	284
100	220
150	193
200	170
250	150

Determine the rate constant for this reaction and verify whether the reaction is of order 1. (8 marks)

QUESTION 3

(a) Consider the reaction

$$
2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \text { which is exothermic. }
$$

A vessel contains $\mathrm{NO}_{2(\mathrm{~g})}, \mathrm{N}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$ at equilibrium. Explain briefly how each of the following stresses will affect the equilibrium position.
(i) $\mathrm{O}_{2(\mathrm{~g})}$ is added
(ii) $\mathrm{NO}_{2(\mathrm{~g})}$ is added
(iii) $\mathrm{N}_{2(\mathrm{~g})}$ is removed
(iv) The volume is halved
(b) The molar conductivity of $0.100 \mathrm{M} \mathrm{KCl}(\mathrm{aq})$ at 298 K is $129 \mathrm{Scm}^{2} \mathrm{Mol}^{-1}$. The measured resistance in a conductivity cell was 28.44 . The resistance was 31.60 when the same cell contained $0.0500 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. Calculate the molar conductivity of $\mathrm{NaOH}(\mathrm{aq})$ at that concentration.
(10marks)

QUESTION 4

(a) Define the following terms:
(i) Equilibrium constant
(ii) Colligative properties
(iii) Order of a reaction
(iv) Molar conductivity
(v) Molecularity
(b) Explain each of the following statements:
(i) Gases are more compressible than liquids.
(ii) Liquids diffuse very slowly.
(iii) If a catalyst did affect $\mathrm{K}_{\mathrm{c}} / \mathrm{K}_{\mathrm{p}}$, it would defy the law of conservation of energy. (3 marks)
(c) What is a redox reaction? Explain using an example.
(3 marks)
(d) The lowering of vapour pressure of a solution of 108.2 g of a substance X in 1 Kg of water at $20^{\circ} \mathrm{C}$ is $24.79 \mathrm{Nm}^{-2}$. The vapour pressure of water at this same temperature is $2.338 \mathrm{kNm}^{-2}$. Calculate the RMM of X .

QUESTION 5

a) 5 moles of ethanol, 6 moles of ethanoic acid, 6 moles of ethylacetate and 4 moles of water were mixed together in a stoppered bottle at $15^{\circ} \mathrm{C}$. After equilibrium was attained, the bottle was found to contain only 4 moles of the acid.
(i) Write the chemical equation for the reaction.
(2marks)
(ii) Give the expression for the equilibrium constant for the reaction. (2 marsk)
(iii) How many moles of ethanol, ethylacetate and water were present in the equilibrium mixture? Explain your answer.
(2 marks)
(iv) If 1 mole of ethylacetate was added after the equilibrium was established, what would happen?
(v) Explain the term "dynamic equilibrium".
b) Two flasks of equal volumes are connected by a narrow tube of negligible volume. Initially, both flasks are $27^{\circ} \mathrm{C}$ and contain 0.70 moles of H_{2} gas, the pressure being 0.50 atm. One of the flasks is then immersed in a hot oil bath at $127^{\circ} \mathrm{C}$ while the other is kept at $27^{\circ} \mathrm{C}$. Calculte the final pressure and the moles of H_{2} in each flask. (10 marks)

