

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE & TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY

FIRST YEAR FIRST SEMESTER 2018/2019 ACADEMIC YEAR MAIN CAMPUS - REGULAR

COURSE CODE: SBT 801

COURSE TITLE: EXPERIMENTAL TECHNIQUES AND

METHODOLOGIES

EXAM VENUE: STREAM: (MSC)

DATE: EXAM SESSION:

TIME: 2 HOURS

Instructions:

1. Answer ALL questions in Section A and Any two questions in Section B

2. Candidates are advised not to write on question paper

3. Candidates must hand in their answer booklets to the invigilator while in the examination room

OUESTION ONE (Compulsory) (30 MARKS)

a) Distinguish between absolute and differential calibration	(2 marks).	
b) Explain the need for regular "matching" of IRGAS during measure	ments (1 ma	ark)
c) Explain the following components of a PCR reaction(i) Denaturation	(3 Marks)	
(ii) Annealing	(3 Marks)	
(iii) Extension	(3 Marks)	
a) Which enzyme can make a DNA copy using an RNA tem	plate?	State its
advantage to the microorganisms in which it occurs		(3
Marks)		
b) Explain the disadvantages of agarose gels in DNA quantification		
	(3 Mai	rks)
c) Outline important considerations when designing a microbiology l	aborato	ory
	(3 Mai	rks)
d) Explain three possible sources of contamination in a microbiology	laborat	tory
	(3 Mai	rks)
e) What are the advantages of using Class II laboratory safe	ety cab	oinets in
microbiological research?	(3 Mai	rks)
f) Distinguish between transmission and scanning electron microscop	pes	
	(3 mar	rks)
OUESTION TWO (15 MARKS)		
a) Discuss five methods of sterilization of media and equipment in	a micr	obiology
laboratory	(7 Mai	rks)
b) Outline the procedure for using a named differential stain for microscopy		
·	(8 M ai	rks)
	,	•

OUESTION THREE (15 MARKS)

Infra-Red Gas Analysis (IRGA) is a technique used to analyze concentrations of CO2 and H₂O in a volume of air. Explain the principle behind the success of the technique and how the technique can be applied in soil microbiology research.

OUESTION FOUR (15 MARKS)

- a) Discuss the principle behind rt-PCR technique in detecting and measuring DNA concentration (8 marks)
- b) Discuss spectrophotometry techniques used in determining the concentration and purity DNA (7 marks)

OUESTION FIVE (15 MARKS)

a) Explain key precautions that need to be taken into consideration before deciding on an appropriate location for the installation of a weather station.

(7 marks)

b) Discuss key weather variables measured by an automatic climate station and how they apply to the general microbiology research. (8 marks)