JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE & TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOLOGICAL SCIENCES

4th YEAR 1st SEMESTER 2018/2019 ACADEMIC YEAR

MAIN CAMPUS - REGULAR

COURSE CODE: SBI 3431

COURSE TITLE: BIOINFORMATICS AND COMPUTATIONAL BIOLOGY

EXAM VENUE: STREAM:

DATE: EXAM SESSION:

TIME: 2 HOURS

Instructions:

- 1. Answer ALL questions in Section A and Any two questions in Section B
- 2. Candidates are advised not to write on question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

SECTION A: SHORT ANSWER QUESTIONS (30 MARKS)

1. Define the term gene ontology. Identify two organizing principles of gene ontology? (3 Marks)

- 2. Biology is flooded with data that cannot be understood without bioinformatics computational tools. Identify three main sources of biological data. (3 Marks)
- 3. Describe three data retrieval systems that are of great relevance to a molecular biologist. (3 Marks)
- 4. Outline three major functions of National Center for Biotechnology information (3 Marks)
- Consider the multiple alignment below of four nucleotide sequences. Use a
 method of maximum parsimony to deduce the most likely phylogenetic tree. (3 Marks)
 Human GAACGGACTTCA
 Mouse GAACGGACTTGA

Mouse GAACGGACTTGA
Frog AACCGGCTAGA
Zebrafish AATCGCCTACA

- 6. Outline three advantages of evolutionary computation (3 Marks)
- 7. Identify three strengths of genetic algorithms (3Marks).
- 8. Distinguish among the terms protein domain, motif and family (3 Marks)
- 9. Below is the multiple sequence alignment of three sequences: seq1 IVFLGE

seq2 LVLLGEAV seq3 LVLLGDSVG

	seq1	seq2	seq3
seq1			
seq2			

Suppose that a gap scores 1, a mismatch 1, and a match +2. Fill in the matrix with the pairwise scores. (3 marks)

10. Differentiate between Needleman-Wunsch and Smith-Waterman pairwise alignment methods (3 marks)

SECTION B: ESSAY QUESTIONS (40 MARKS)

- 11. Discuss the various molecular biology tasks that can be analyzed comprehensively using bioinformatics and computational biology (20 marks)
- 12. Discuss the two rapid alignment methods (FASTA and BLAST) and identify both advantages and disadvantages for each. (20 Marks)
- 13. Discuss dot matrix analysis plot method of pairwise sequence alignment. (20 Marks)
- 14. Discuss the process involved in shotgun sequencing and sequence assembly. (20 Marks)