JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF
SCIENCE IN RENEWABLE ENERGY, CONSTRUCTION AND
MANAGEMENT AND WATER RESOURCE ENGINEERING
$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2018/2019 ACADEMIC YEAR
MAIN REGULAR

COURSE CODE: SCH 3111
COURSE TITLE: INORGANIC CHEMISTRY
EXAM VENUE:
STREAM: (BEd. Science)
DATE:
TIME:
EXAM SESSION:

INSTRUCTIONS:

1. Answer question 1 (Compulsory) in section A and ANY other 2 questions in Section B.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.
4. Some important information/formulas are found on the last page of this question paper

SECTION A

Question 1

a) An increase in the principal quantum number from $\mathrm{n}=1$ to $\mathrm{n}=\infty$ corresponds to the ionization of the atom and the ionization energy can be determined. Given that one mole of a substance contains $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ particles, determine the first ionization energy for H .
b) Briefly discuss the four quantum numbers that fully describes the electronic configuration of an atom.
c) Describe the electronic configurations $(s p d f)$ of the following atoms.
i. \quad Zinc $(Z=30)$
ii. Chromium $(Z=24)$
iii. \quad Copper $(Z=29)$
iv. Platinum $(Z=78)$
d) Use the electron box and arrow configurations in combination with Pauli exclusion principle and Hund's rule to demonstrate the electronic configuration of $\mathrm{V}^{+}, \mathrm{V}^{2+}, \mathrm{V}^{3+}, \mathrm{V}^{4+}$, and V^{5+} (Vanadium, $\mathrm{Z}=23$) (4 marks)
e) Use the Bohr equation to determine the Bohr radius of H atom at $\mathrm{n}=1$.
(4 marks)

SECTION B answer any two questions

Question 2

a) Describe the energy level diagram for the Xenone $(Z=54)$ and Radon $(Z$ =86) gases (10 marks)
b) Describe the shapes of atomic orbitals in an s orbital, p orbital and d orbital

Question 3

a) Given that the principal quantum number, n, is 3 , and using the rules that govern quantum numbers n and l, write down the allowed values of l and m_{l}, and determine the number of atomic orbitals possible for $\mathrm{n}=4$.
(6 marks)
b) Confirm that the experimentally observed electronic configuration of K , $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{1}$, is energetically more stable than the configuration $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 3 d^{l}$. (6 marks)
c) Briefly discuss the following principles: The aufbau principle, The Pauli exclusion principle, degenerate orbitals, and The hands rule. (8 marks)

Question 4

a) Brirfly discuss electron transitions that make up the Lyman and Balmer series in the emission spectrum of atomic hydrogen (use of a diagram is prefered).
b) Use the first 30 elements in the periodic table to demonstrate why they are lebelled as s block, d block, and p block elements.
c) Briefly discuss the molecular orbitals in an oxygen molecule. (5 marks)
Periodic table

二コ ¢ ¢	ำ
R \square° ¢	은읏
	둥
玄	으ㄴㅡㅜㄴ
	\％～4
－¢	\％し
은	बॅ
¢ ర⿰亻弋工凡	8
¢ 3 ¢	sic
\％En	
－$\frac{\square}{2}$ \％	$m \frac{0}{2}$
－ロ～～	Nコ
	お＜$\frac{0}{\text { ¢ }}$
® U	
in ${ }^{\circ} \mathrm{O}$	
n 0 0 0 0 0 0	n 0 c 4

