

### JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

### SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

# UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE PUBLIC HEALTH

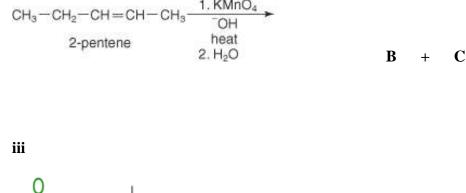
## COURSE CODE : SCH 3112

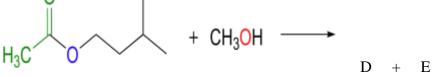
## **COURSE TITLE: APPLIED CHEMISTRY**

## FIRST YEAR FIRST SEMESTER

#### INSTRUCTIONS

- 1. Answer question 1(Compulsory) in section A and ANY other 2 questions in section B
- 2. Candidates are advised not to write on the question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room
- 4. Some important information/formula are found on the last page of the questions paper


#### **SECTION A**


#### **QUESTION 1 30 marks**

a) Name and draw the structure of the main compounds A, B, C, D and E in the reactions below 5 mrks

i.

$$H_3C - CH - CH_2 - CH_3 KOH (alcoholic) - HBr + HBr$$





- b) The cations  $O_2^+$  and  $N_2^+$  are important components of the earth's upper atmosphere. Using Molecular orbital energy level diagram write the electronic configuration of  $O_2^+$  and predict the bond order. 4 mrks
- c) Briefly discuss the following terms with the help of examples in each case;
  - i. Dipole-dipole interaction 2 mrks
  - ii. Ion-dipole interaction 2 mrks

#### d) Compare the THREE elements N,O and P

| i.  | Arrange the elements in order of increasing atomic radius. Justify your answer | 3 mrks |
|-----|--------------------------------------------------------------------------------|--------|
| ii. | Identify the element with the highest ionization energy. Explain your answer   | 3 mrks |

- iii. Between N and P which one has the highest electron affinity? Explain 2 mrks
- iv. Explain why the Ionization energies of Si, P and S are in the order of Si< P>S 2 mrks

- i. A buffer solution was prepared by mixing 0.20 mol dm<sup>-3</sup> ethanoic acid and 0.10 mol dm<sup>-3</sup> sodium ethanoate. If the K<sub>a</sub> for ethanoic acid is  $1.74 \times 10^{-5}$  mol dm<sup>-3</sup>, calculate the theoretical hydrogen ion concentration and pH of the buffer solution. 3 mrks
- ii. In what ratio should a 0.30 mol  $dm^{-3}$  of ethanoic acid be mixed with a 0.30 mol/dm<sup>3</sup> solution of sodium ethanoate to give a buffer solution of pH 5.6? 4 marks

e)

# **SECTION B**

# Answer ANY TWO questions from Section B

# QUESTION 2 20 MARKS

|                                                                                                                                                           | Define the term line spectrum<br>Explain how line spectrum can be used for the identification of elements |        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------|--|--|
| c)                                                                                                                                                        | Hydrogen atom has one electron, however its spectrum contains so many lines. Explain. 2 mrk               | 5      |  |  |
| d)                                                                                                                                                        |                                                                                                           |        |  |  |
|                                                                                                                                                           | i. the energy change ( $\Delta E$ ) for the electron in this jump                                         | 3 mrks |  |  |
|                                                                                                                                                           | ii. the frequency (v) and wavelength ( $\lambda$ ) of light emitted from this energy ch                   | ange   |  |  |
|                                                                                                                                                           |                                                                                                           | 3 mrks |  |  |
|                                                                                                                                                           | iii. the spectral region in which this this light will be formed                                          | 2 mrks |  |  |
| e)                                                                                                                                                        | With the help of an example distinguish between Molarity and Molality                                     | 2 mrks |  |  |
| f) In an experiment equal volumes of 0.025 mol dm <sup><math>-3</math></sup> potassium bromide (KBr) and 0.00                                             |                                                                                                           |        |  |  |
| $dm^{-3}$ lead(II) nitrate (Pb(NO <sub>3</sub> ) <sub>2</sub> ) solutions were mixed (K <sub>sp(PbBr2)</sub> = 7.9 x 10 <sup>-5</sup> mol <sup>3</sup> dr |                                                                                                           |        |  |  |
|                                                                                                                                                           |                                                                                                           |        |  |  |
|                                                                                                                                                           | a) Write down                                                                                             |        |  |  |
|                                                                                                                                                           | (i) the K <sub>sp</sub> expression for lead(II) bromide                                                   | 1 mrk  |  |  |
|                                                                                                                                                           | (ii) the ionic equation for its precipitation.                                                            | 1 mrk  |  |  |
|                                                                                                                                                           | b) Show by calculation if lead (II) bromide precipitates after mixing the solutions.                      | 3 mrks |  |  |

# QUESTION 3 20 MARKS

| a) | State Le Chatelier's Principle                                  | 2 mrks |
|----|-----------------------------------------------------------------|--------|
| b) | Define the term limiting reagent                                | 1 mrks |
| c) | Explain why elements of the same group have similar properties. | 2 mrks |

- d) A student is in possession of a weak acid solution of 0.2 M HF. He decided to add to his solution an equal amount 0.10 M HCl.  $Ka = 6.8 \times 10^{-4}$ 
  - i. Determine the concentration of fluoride Ion and the pH of the solution before adding hydrochloric acid. 3 mrks
  - ii. Calculate the pH of the mixture and explain the effect of the common effect to the pH of the final solution.3 mrks
- e) Briefly explain the correlation between atomic size and ionization enthalpyf) Discuss any TWO relevant applications of radioactivity6 mrks

#### QUESTION 4 20 MARKS

| a) | Distinguish between artificial and natural Transmutation                           | 2 mrks |  |
|----|------------------------------------------------------------------------------------|--------|--|
| b) | ) With the help of curly arrows explain the Electrophilic Aromatic Substitution me |        |  |
|    | using benzene and a compound <b>EY</b>                                             | 3 mrks |  |
| c) | Explain why aromatic compounds are stable?                                         | 1 mrk  |  |
| 4) | Discuss the relevance of electromagnetic radiation in the Global Warming phenor    |        |  |
| u) | Discuss the relevance of electromagnetic radiation in the Global warning phenol    | 3 mrks |  |
| ,  | Identify the missing product in the radioactive equation below                     |        |  |

- f) State Pauli exclusion principle
- g) Write the electronic configuration of the following Cr, Ti, Sn 4 mrks
- h) Calculate the lattice enthalpy for lithium fluoride, given the following information 4 mrks

2 mrks

- Enthalpy of sublimation for solid lithium = 161 kJ/mol
- First ionization energy for lithium = 520 kJ/mol
- F-F bond dissociation energy = 154 kJ/mol
- Enthalpy of formation for F(g) = 77 kJ/mol
- Electron affinity for fluorine = -328 kJ/mol
- Enthalpy of formation for solid lithium fluoride = -617 kJ/mol

End

# Support information

| h = planck's constant = | e |
|-------------------------|---|
| C= speed of light =     | 3 |
| R= Rhyberg's constant = | 1 |

6.626 x 10<sup>-34</sup> J.S 3.0x10<sup>8</sup> m/s 1.0973731 x 10<sup>7</sup> m/s

| 18<br>2<br>He                                                                                             | 10<br>Ne<br>20.18<br>18<br>39.95              | 36<br>Kr<br>83.80       | 54<br>Xe                   | 86<br>Rn<br>222    |                           | Î | 71<br>Lu<br>74.97  | 103<br>262          |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|----------------------------|--------------------|---------------------------|---|--------------------|---------------------|
| 17                                                                                                        |                                               | 35<br>Br<br>79.91       |                            |                    |                           |   | 70<br>Yb<br>173.04 |                     |
| 16                                                                                                        |                                               | 34<br>Se<br>78.96       |                            | 84<br>Po<br>210    |                           |   | 69<br>Tm<br>168.93 | 101<br>Md<br>258.10 |
| 5                                                                                                         | 7<br>14.01<br>15<br>30.97                     | 33<br>As<br>74.92       | 51<br>5 <b>b</b><br>121.75 | 83<br>Bi<br>208.98 |                           |   | 68<br>Er<br>167.26 | 100<br>Fm<br>257.10 |
| 14                                                                                                        | 6<br>C<br>12.01<br>14<br>Si<br>28.09          | 32<br>Ge<br>72.59       | 50<br>Sn<br>118.71         | 82<br>Pb<br>207.19 |                           |   | 67<br>Ho<br>164.93 | 99<br>Es<br>252.09  |
| ŧ                                                                                                         | 5<br>B<br>10.81<br>13<br>13<br>13<br>26.98    | 31<br>Ga<br>69.72       | 49<br>In<br>114.82         | 81<br>11<br>204.37 |                           |   | 66<br>Dy<br>162.50 | 1                   |
|                                                                                                           | 12                                            | 30<br>Zn<br>65,41       | 48<br>Cd<br>112.40         | 80<br>Hg<br>200.59 | 112<br>Uub<br>[285]       |   | 65<br>Tb<br>158.92 | 97<br>Bk<br>249.08  |
| r<br>hass, A <sub>r</sub>                                                                                 | ٦                                             | 82 BS                   | 47<br>Ag<br>107.87         | 79<br>Au<br>196.97 | 111<br><b>Rg</b><br>[272] |   |                    | 96<br>Cm<br>244.07  |
| <ul> <li>Atomic number, Z</li> <li>Element symbol</li> <li>Relative atomic mass, A<sub>r</sub></li> </ul> | 1                                             | 28<br>Ni<br>58.69       | 46<br>Pd<br>106.42         | 78<br>Pt<br>195.08 | 110<br>DS<br>[271]        |   | 63<br>Eu<br>151.96 | 95<br>Am<br>241.06  |
| Atomic number<br>Element symbol<br>Relative atomic                                                        | <b>م</b>                                      | 27<br>58,93             | 45<br>Rh<br>102.91         | 77<br>Ir<br>192.22 | 109<br>Mt<br>[268]        |   | 62<br>5m<br>150.35 | 94<br>Pu<br>239.05  |
| $\downarrow \downarrow \downarrow \downarrow$                                                             |                                               | 26<br>Fe<br>55.85       | 44<br>Ru<br>101.07         | 76<br>OS<br>190.23 | 108<br>Hs<br>[277]        |   | 61<br>Pm<br>146.92 | 93<br>Np<br>237.05  |
| 008 T -                                                                                                   | ~                                             | 25<br>Mn<br>54.94       | 43<br><b>7</b><br>98.91    | 75<br>Re<br>186.21 | 107<br><b>Bh</b><br>[264] |   | 60<br>Nd<br>144.24 | 92<br>U<br>238.03   |
|                                                                                                           | و                                             | 24<br><b>G</b><br>52.01 | 42<br>Mo<br>95,94          | 74<br>W<br>183.85  | 106<br><b>Sg</b><br>[266] |   | 59<br>Pr<br>140.91 | 91<br>Pa<br>231.04  |
|                                                                                                           | S                                             | 23 × 23                 | 41<br>Nb<br>92.91          | 73<br>Ta<br>180.95 | 105<br>Db<br>[262]        |   | 58<br>Ce<br>140.12 | 90<br>Th<br>232.04  |
|                                                                                                           | 4                                             | 22<br>TI<br>47.90       | 40<br>Zr<br>91.22          | 72<br>Hf<br>178.49 | 104<br>Rf<br>[261]        |   | 57<br>La<br>138.91 | 89<br>Ac<br>227.03  |
|                                                                                                           | m                                             | 21<br>Sc<br>44.96       | 39<br>★<br>88.91           | la-Lu              | Ac-Lr                     |   |                    |                     |
| ~                                                                                                         | 4<br>Be<br>9.01<br>12<br>12<br>24,31<br>24,31 | 20<br>Ca<br>40.08       | 38<br>Sr<br>87.62          | 56<br>Ba<br>137,34 | 88<br>Ra<br>226.03        |   | Lanthanoids        | loids               |
| H                                                                                                         | 3<br>Li<br>6.94<br>11<br>Na<br>22.99          | 19<br>K<br>39,10        | 37<br><b>Rb</b><br>85.47   | 55<br>CS<br>132.91 | 87<br>Fr<br>223           |   | Lant               | Actinoids           |

Periodic table