JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
 UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE COMMUNITY HEALTH AND DEVELOPMENT \& BACHELOR SCIENCE PUBLIC HEALTH

COURSE CODE: SCH 3112
COURSE TITLE: ORGANIC CHEMISTRY

INSTRUCTIONS

1. Answer question 1 (Compulsory) in section A and $A N Y$ other 2 questions in section B
2. Candidates are advised not to write on the question paper
3. Candidates must hand in their answer booklets to the invigilator while in the examination room
4. Some important information/formula are found on the last page of the questions paper

SECTION A 30 marks

a) Define hyperventilation

2 mrks
b) Define pH and give the normal range of human blood pH values.

2 mrks
c) Discuss the role of the following in Acid Base Balance in the blood;

4 mrks
i. Lungs
ii. Kidney
d) Distinguish between Metabolic and Respiratory Acidosis

2 mrks
e) Describe how the pH of the blood changes with an increase in the level of carbon dioxide 2 mrks
f) State TWO causes of increased levels of carbon dioxide

2 mrks
g) Explain how the respiratory and renal systems attempt to compensate for acidosis 4 mrks
h) Determine
a. the pH of a solution containing $0.25 \mathrm{~mol} / \mathrm{lit}$ of aqueous acetic acid
b. the pH of a mixture solution after adding $0.10 \mathrm{~mol} / \mathrm{lit}$ of sodium acetate and state the effect of the additional solution to the pH of aqueous acetic acid.
$\mathrm{Ka}=1.8 \times 10^{-5}$
i) Consider the reaction: $\mathrm{SO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{SO}_{3}+\mathrm{O}_{2}$. A rate study of this reaction was conducted at 298 K . The data that were obtained are shown in the table.

$\left[\mathbf{S O}_{2}\right], \mathbf{M}$	$\left[\mathbf{O}_{3}\right], \mathbf{M}$	Initial Rate, $\mathbf{M} . \mathbf{s}$
0.25	0.40	0.118
0.25	0.20	0.18
0.75	0.20	1.062

i. What is the order of reactions with respect to SO_{2} and O_{2}

4 mrks
ii. Write the rate law for this reaction

1mrk
iii. Determine the value and units of the rate constant, $2.36 \mathrm{M}^{-1} . \mathrm{s}^{-1} \quad 2 \mathrm{mrks}$
iv. Calculate the rate of reaction when the concentrations of SO_{2} and O_{2} are given as 0.6 M and 0.25 , respectively

SECTION B

QUESTION 2

20 MARKS

a) Discuss how the following factors affect the equilibrium;

6 mrks
i. Concentration
ii. Temperature
b) For the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
i. Write the equilibrium constant expression, Kp . 2 mrks
ii. Determine the value for Kp if $\mathrm{Kc}=2.8 \times 10^{2}$ at $1000 \mathrm{~K} \quad 4$ mrks
c) Draw the structure for each of the compounds below. 2 mrks
i. 2,3-dimethylbutane
ii. 4-ethyl-2-methylheptane
d) If $20.0 \mathrm{~cm}^{3}$ of a Sulphuric acid solution was titrated with a standardized solution of $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}(0.05 \mathrm{M})$ potassium hydroxide. And using phenolphthalein indicator for the titration, the acid required $36.0 \mathrm{~cm}^{3}$ of the alkali KOH for neutralization.
Determine the concentration of the acid in $\mathrm{g} / \mathrm{lit}$? $\quad \mathrm{H}=1 ; \mathrm{S}=32 ; \mathrm{O}=16 ; \mathrm{K}=40 \quad 6 \mathrm{mrks}$

QUESTION 3

20 MARKS

a) State Le Chatelier's Principle

2 mrks
b) Discuss how the following factors affect the rate of reaction

6 mrks
i. Temperature
ii. Concentration
iii. Catalyst
c) At $1000^{\circ} \mathrm{C}$, cyclobutane $\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$ decomposes in a first-order reaction, with the very high rate constant of $87{ }^{\mathrm{s}-1}$, to two molecules of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$.

4 mrks
(a) If the initial $\mathrm{C}_{4} \mathrm{H}_{8}$ concentration is 2.00 M , what is the concentration after 0.010 s ?
(b) What fraction of $\mathrm{C}_{4} \mathrm{H}_{8}$ has decomposed in this time?
d) Study the Friedel-Crafts Acylation reaction below and predict the compounds formed 2 mrks

e) Carboxylic acids have higher boiling points than Alcohols. Explain 2 mrks
f) Compare and contrast covalent and ionic compounds with regard to 4 mrks
i. Volatility.
ii. Electrical conductivity

QUESTION 420 MARKS

a) Define the term equivalence point 2 mrks
b) Explain TWO reasons why Aldehydes are more reactive that Ketone 4 mrks
c) A certain reaction proceeds through the first order kinetics. The half-life of the reaction is 180s. Determine the percentage of the initial concentration that will remain after 900s. 4 mrks
d) Use standard electrode potentials provided below to answer the questions that follow:

$$
\begin{array}{|l|}
\hline \text { Equations } \\
\hline C r^{+3}{ }_{\text {(aq) }}+3 e^{-} \rightarrow C r_{(s)} \mathrm{E}^{0}=-0.74 \mathrm{~V} \\
\hline C u^{+2}{ }_{(a q)}+2 e^{-} \rightarrow C u_{(s)} \mathrm{E}^{0}=+0.34 \mathrm{~V} \\
\hline F e^{+2}{ }_{(a q)}+2 e^{-} \rightarrow F e_{(s)} \mathrm{E}^{0}=-0.44 \mathrm{~V} \\
\hline I_{2(s)}+2 e^{-} \rightarrow 2 I_{(a q)} \mathrm{E}^{\circ}=+0.54 \mathrm{~V} \\
\hline
\end{array}
$$

a) Use the half-cell reactions for $\left.\mathrm{Fe}(\mathrm{s}) / \mathrm{Fe}^{2+(} \mathrm{aq}\right)$ and $\left.\mathrm{Cu}(\mathrm{s}) / \mathrm{Cu}^{2+(} \mathrm{aq}\right)$ to construct an electrochemical cell and predict its standard voltage and state whether the reaction is spontaneous or not.

5 mrks
b) State and explain the function of the salt bridge in an electrochemical cell 3 mrks
c) Briefly explain one importance of Redox process in industrial process

