

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE COMMUNITY HEALTH AND DEVELOPMENT & BACHELOR SCIENCE PUBLIC HEALTH

COURSE CODE: SCH 3112

COURSE TITLE: ORGANIC CHEMISTRY

INSTRUCTIONS

- 1. Answer question 1(Compulsory) in section A and ANY other 2 questions in section B
- 2. Candidates are advised not to write on the question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room
- 4. Some important information/formula are found on the last page of the questions paper

SECTION A

30 marks

a)	Define hyperventilation	2 mrks	
b)	Define pH and give the normal range of human blood pH values.	2 mrks	
c)	Discuss the role of the following in Acid Base Balance in the blood;	4 mrks	
	i. Lungs		
	ii. Kidney		
d)	Distinguish between Metabolic and Respiratory Acidosis	2 mrks	
e)	Describe how the pH of the blood changes with an increase in the level of carbon dioxid		
	2 mrks		
f)	State TWO causes of increased levels of carbon dioxide	2 mrks	

- g) Explain how the respiratory and renal systems attempt to compensate for acidosis 4 mrks
- h) Determine
 - a. the pH of a solution containing 0.25 mol/lit of aqueous acetic acid
 - b. the pH of a mixture solution after adding 0.10 mol/lit of sodium acetate and state the effect of the additional solution to the pH of aqueous acetic acid. $Ka = 1.8 \times 10^{-5}$ 5 mrks
- i) Consider the reaction: $SO_2 + O_3 \rightarrow SO_3 + O_2$. A rate study of this reaction was conducted at 298 K. The data that were obtained are shown in the table.

[SO ₂], M	[O3], M	Initial Rate, M.s
0.25	0.40	0.118
0.25	0.20	0.18
0.75	0.20	1.062

i. What is the order of reactions with respect to SO_2 and O_2

4 mrks

- ii. Write the rate law for this reaction 1mrk
- iii. Determine the value and units of the rate constant, 2.36 M^{-1} . s⁻¹ 2 mrks
- iv. Calculate the rate of reaction when the concentrations of SO₂ and O₂ are given as 0.6 M and 0.25, respectively 2 mrks

SECTION B QUESTION 2 20 MARKS

- a) Discuss how the following factors affect the equilibrium;
 6 mrks
 i. Concentration
 ii. Temperature
 b) For the reaction, 2SO₂(g) + O₂(g) = 2SO₃(g)
 i. Write the equilibrium constant expression, Kp. 2 mrks
 ii. Determine the value for Kp if Kc = 2.8x10² at 1000 K
 - c) Draw the structure for each of the compounds below. 2 mrks
 - i. 2,3-dimethylbutane
 - ii. 4-ethyl-2-methylheptane

d) If 20.0 cm³ of a Sulphuric acid solution was titrated with a standardized solution of 0.0500 mol/dm³ (0.05 M) potassium hydroxide. And using phenolphthalein indicator for the titration, the acid required 36.0 cm³ of the alkali KOH for neutralization. Determine the concentration of the acid in g/lit? H=1;S=32; O= 16; K= 40 6 mrks

QUESTION 3

20 MARKS

- a) State Le Chatelier's Principleb) Discuss how the following factors affect the rate of reaction6 mrks
 - i. Temperature
 - ii. Concentration
 - iii. Catalyst
- c) At 1000°C, cyclobutane (C₄H₈) decomposes in a first-order reaction, with the very high rate constant of 87 ^{s-1}, to two molecules of ethylene (C₂H₄). 4 mrks
 - (a) If the initial C_4H_8 concentration is 2.00 M, what is the concentration after 0.010 s?
 - (b) What fraction of C_4H_8 has decomposed in this time?
- d) Study the Friedel-Crafts Acylation reaction below and predict the compounds formed 2 mrks

- e) Carboxylic acids have higher boiling points than Alcohols. Explain 2 mrks
- f) Compare and contrast covalent and ionic compounds with regard to 4 mrks
 i. Volatility.
 - ii. Electrical conductivity

QUESTION 4 20 MARKS

- a) Define the term equivalence point
- b) Explain TWO reasons why Aldehydes are more reactive that Ketone
- c) A certain reaction proceeds through the first order kinetics. The half-life of the reaction is 180s. Determine the percentage of the initial concentration that will remain after 900s.
 4 mrks
- d) Use standard electrode potentials provided below to answer the questions that follow:

Equations	E^{o}
$Cr^{+3}_{(aq)} + 3e^{-} \rightarrow Cr_{(s)} E^{0}$	= -0.74 V
$Cu^{+2}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)} E^{0}$	$^{\circ} = +0.34 \text{ V}$
$Fe^{+2}_{(aq)} + 2e^{-} \rightarrow Fe_{(s)} E^{0}$	= -0.44 V
$I_{2(s)} + 2e^{-} \rightarrow 2I^{-}_{(aq)} \mathrm{E}^{\mathrm{o}} = -$	+0.54 V

- a) Use the half-cell reactions for Fe(s)/Fe²⁺⁽aq) and Cu(s)/ Cu²⁺⁽aq) to construct an electrochemical cell and predict its standard voltage and state whether the reaction is spontaneous or not.
- b) State and explain the function of the salt bridge in an electrochemical cell 3 mrks
- c) Briefly explain one importance of Redox process in industrial process 2 mrks

2 mrks 4 mrks