

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOLOGICAL SCIENCES

2^{ND} YEAR 1^{ST} SEMESTER 2018/2019 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: SCH 3211

COURSE TITLE: INORGANIC CHEMISTRY

EXAM VENUE: STREAM: (BEd. Science)

DATE:

TIME: EXAM SESSION:

INSTRUCTIONS:

- 1. Answer question 1 (Compulsory) in section A and ANY other 2 questions in Section B.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.
- 4. Some important information/formulas are found on the last page of this question paper

SECTION A

Question 1

a) Given that the principal quantum number, n, is 3, and using the rules that govern quantum numbers n and l, write down the allowed values of l and m_l , and determine the number of atomic orbitals possible for n = 4.

(3 marks)

- b) Confirm that the experimentally observed electronic configuration of K, $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^1$, is energetically more stable than the configuration $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^1$. (3 marks)
- c) Briefly discuss the following principles: The aufbau principle, The Pauli exclusion principle, degenerate orbitals, and The hands rule. (4 marks)
- d) Describe the energy level diagram for the Xenone (Z = 54) gas (4 marks)
- e) Briefly discuss the four quantum numbers that fully describes the electronic configuration of an atom. (4 marks)
- f) Use the Bohr equation to determine the Bohr radius of H atom at n = 1.

 (4 marks)
- g) Describe the electronic configurations (*spdf*) of the following atoms. (8 marks)
 - i. Zinc (Z = 30)
 - ii. Chromium (Z = 24)
 - iii. Copper (Z = 29)
 - iv. Platinum (Z = 78)
- h) Use the electron box and arrow configurations in combination with Pauli exclusion principle and Hund's rule to demonstrate the electronic configuration of V^+ , V^{2+} , V^{3+} , V^{4+} , and V^{5+} (Vanadium, Z=23) (4 marks)

SECTION B answer any two questions

Question 2

- a) Describe the shapes of atomic orbitals in an s orbital, p orbital and d orbital (10 marks)
- b) An increase in the principal quantum number from n = 1 to $n = \infty$ corresponds to the ionization of the atom and the ionization energy can be determined. Given that one mole of a substance contains $6.022 \times 10^{23} \text{mol}^{-1}$ particles, determine the first ionization energy for H. (6 marks)
- c) Use the electron box and arrow configurations in combination with Pauli exclusion principle and Hund's rule to demonstrate the electronic configuration of V^+ , V^{2+} , V^{3+} , V^{4+} , and V^{5+} (Vanadium, Z=23) (4 marks)

Ouestion 3

- a. Briefly discuss Postulates of Niels Bohr Atomic Theory and Heisenberg's uncertainty principle of the position of an electron (10 marks)
- b. Briefly describe the valence bond theory, the molecular orbital theory and the ligand field theory. (10 marks)

Question 4

- a) Brirfly discuss electron transitions that make up the Lyman and Balmer series in the emission spectrum of atomic hydrogen (use of a diagram is prefered). (10 marks)
- b) Use the first 30 elements in the periodic table to demonstrate why they are lebelled as *s* block, *d* block, and *p* block elements. (10 marks)

Periodic table

1
F,
1.008
23 24 25
ა >
50.94 52.01 54.94
41 42 43
Zr Nb Mo Tc Rt
92.91 95.94 98.91
72 73 74 75
Ta W Re
178,49 180,95 183.85 186.21
105 106 107
Db Sq Bh
[262] [266] [264]

	25	58	59	09	61	62	63	64	9	99	19	89	69	70	71
Lanthanoids	Гa	e	¥	PN	Pm	Sm	Eu	99	1 P	٥	유	ш	ᄪ	γp	2
	138.91	140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
	68	90	91	92	93	94	95	96	46	86	66	100	101	102	103
Actinoids	Ac	두	Pa	>	dN	Pu	Am	E	Bk	t	Es	F	PΜ	8	ב
	227.03	_	231.04	238.03	237.05	239.05	241.06	244.07	249.08	252.08	252.09	257.10	258.10	529	297