

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

1ST YEAR 1ST SEMESTER 2018/2019 ACADEMIC YEAR

MAIN

REGULAR

COURSE CODE: SPH 104

COURSE TITLE: THERMAL PHYSICS

EXAM VENUE:

STREAM: EDUCATION

DATE:

EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful Constants

Specific heat capacity of water $c_w = 4200 Jkg^{-1}K^{-1}$ Boltzmann's constant $k_B = 1.38 \times 10^{-23} JK^{-1}$ Mass of oxygen molecule = 0.032kgStefan's constant $\sigma = 5.67 \times 10^{-8} Wm^{-2}K^{-4}$ Latent heat of fusion of water = $334kJkg^{-1}$ Latent heat of vaporization of water = $2256kJkg^{-1}$

SECTION A

QUESTION 1(30 MARKS)

(a) Distinguish between heat and temperature.	(2 marks)
(b) Explain the following terms.	
(i) Thermal equilibrium	(1 mark)
(ii) Triple point of water	(1 mark)
(iii) Convection	(1 mark)
(iv)The Zeroth law of thermodynamics	(1 mark)
(c) Consider a temperature scale called the Z scale in which the be	oiling point of water is $65^{\circ}Z$

and the freezing point is $-14.0^{\circ}Z$. Assuming the Z scale is linear, determine the temperature on the Fahrenheit scale that corresponds to $-98.0^{\circ}Z$ (4 marks)

- (d) Calculate the quantity of heat conducted through $2m^2$ of a brick wall 12cm thick in 1 hour if the temperature on one side is $8^{\circ}C$ and on the other side is $28^{\circ}C$.(Thermal conductivity of brick = $0.13Wm^{-1}K^{-1}$) (3 marks)
- (e) A metal of mass 200g at $100^{\circ}C$ is dropped into 80g of water at $15^{\circ}C$ contained in a calorimeter of mass 120g and specific heat capacity $0.4kJkg^{-1}K^{-1}$. The final temperature reached is $35^{\circ}C$. Determine the specific heat capacity of the metal. (3 marks)

(f) Show that the work done by a gas confined to a cylinder is given by $W = \int_{V_i}^{T} P dV$ where the

symbols have their usual meanings.

(3 marks)

- (g) State Charles' and Boyle's laws.
- (h) One mole of ideal gas expands at a constant temperature of 310K from an initial volume of 12l to a final volume of 19l. Determine the work done by the gas during the expansion.

(3 marks)

- (i) Calculate the root mean square speed for oxygen molecule at 300K. (3 marks)
- (j) When a gas is compressed, it is found that its pressure increases. Explain this phenomenon of increase in pressure in terms of motion of molecules of the gas. (3 marks)

SECTION B

Answer any TWO questions in this section QUESTION 2 (20 MARKS)

(a)Derive the mathematical relationship between the coefficient of volume expansion and the coefficient of linear expansion. (7 marks)

(b) In order to make connection to the carbon anode of a transmitting valve, it is necessary to thread a copper wire of diameter 2mm at a temperature of $20^{\circ}C$ through a smaller hole in the carbon block. If the process is just carried out by immersing both specimens in dry ice at $-80^{\circ}C$ and the coefficient of linear expansion of copper and carbon are $1.7 \times 10^{-5} K^{-1}$ and $5 \times 10^{-6} K^{-1}$, calculate the size of the hole at $20^{\circ}C$. (7 marks)

(c) Determine the heat lossed through radiation in 10 minutes from the human body of surface area $1m^2$ and temperature $37^{\circ}C$ to the environment at a temperature of $23^{\circ}C$. Take the emissivity of the body as 0.7 (6 marks)

QUESTION 3 (20 MARKS)

(a) (i) State the difference between heat capacity and specific heat capacity (2 marks) (ii) Calculate the amount of heat required to convert 12.0g of ice at $-10^{\circ}C$ to steam at $100^{\circ}C$ (9 marks)

- (b) Explain the following quasistatic processes and write down the mathematical form that each reduces the first law of thermodynamics to.
 - (i)Adiabatic process(2 marks)(ii)Isochoric process(2 marks)

(2 marks)

- (iii) Cyclical process
- (iv) Free expansion
- (c) State Dalton's law of partial pressures.

(2 marks) (2 marks) (1 mark)

QUESTION 4 (20 MARKS)

(a) State **any FOUR** assumptions in the study of kinetic theory of gases. (4 marks)

(b) Derive the equation for the root mean square velocity of an ideal gas in the form $v_{rms} = \sqrt{\frac{3RT}{M}}$

where the symbols have their usual meanings that must be stated in the derivation.

(11 marks)

(c) Using the result in 4 (b), obtain the equation for the average translational kinetic energy of the gas. (5 marks)

QUESTION 5 (20 MARKS)

(a) By starting with a composite slab consisting of two materials having different thickness L_1 and L_2 and different thermal conductivities k_1 and k_2 , show that if each face of the slab has an area A and the outer surfaces of the slab are at temperature T_H and T_C , then for *n* such materials the rate of conduction of heat is given by $P_{cond} = \frac{A(T_H - T_C)}{\sum_{i=1}^n \left(\frac{L_i}{k_i}\right)}$ (10 marks)

(b) A sheet of rubber and a sheet of cardboard each 2mm thick are pressed together and their outer faces are maintained respectively at $0^{\circ}C$ and $25^{\circ}C$. If the thermal conductivities of rubber and cardboard are respectively 0.13 and $0.05Wm^{-1}K^{-1}$, find the quantity of heat which flows in 1 hour across a piece of composite sheet of area. (10 marks)