

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE) 4TH YEAR 1ST SEMESTER 2018/2019 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: SPH 401

COURSE TITLE: SOLID STATE PHYSICS

EXAM VENUE:

STREAM: EDUCATION

DATE:

EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful constants

Mass of an electron $m_e = 9.11 \times 10^{-31} kg$ Planck's constant $h = 6.63 \times 10^{-34} Js$ $1eV = 1.6 \times 10^{-19} J$

SECTION A

QUESTION 1 (30 MARKS)

a) Define the following terms as used in Solid state Physics.	
(i) Degeneracy	(1 mark)
(ii) Crystal	(1 mark)
(iii) Phonons	(1 mark)
(iv) Lattice	(1 mark)
b) Explain the formation of a crystal	(2 marks)
c) Starting with the time-dependent Schroedinger equation, obtain the time	evolution operator.

d) The plane intercepts in a crystal occur $3\vec{a}, 2\vec{b}, 2\vec{c}$. Determine the Miller indices of the plane, hence obtain the interplanar distance given that the lattice parameter is a. (3 marks)

e) Given that Iron has a Fermi energy of $11.1 \, eV$, calculate the radius k_F of the Fermisphere by assuming that electrons in Iron have an effective mass equal to the free electron mass.

(3 marks)

(3 marks)

f) By defining
$$x = \left(\frac{\varepsilon_i - \mu}{k_B T}\right)$$
 in the Fermi-Dirac distribution function, show that the average

population of an eigenstate for fermions cannot exceed 1. (2 marks)

- g) Outline **any TWO** characteristics of Bose-Einstein distribution. (2 marks)
- h) State the paradox in the Drude's free electron model hence explain how this paradox was removed by Sommerfeld. (2 marks)
- i) Assuming that the transverse and longitudinal waves have a common velocity, show that the

limiting frequency in the Debye theory of specific heat is given by
$$v_m = \left(\frac{3N}{4\pi V}\right)^{\frac{1}{3}}c$$

where the symbols have their usual meanings.

j) A crystal lattice has a lattice constant a. By modeling a section of the lattice between two lattice points separated by a distance a as a string of mass m and length a fixed on both ends and vibrating freely, show that the equation for the energy spectrum of the atoms is

$$E_n = n^2 \frac{\hbar^2 \pi^2}{2ma^2}; n = 1, 2, \dots$$
 (3 marks)

(2 marks)

k) Distinguish between diamagnetic and paramagnetic substances. (1 mark)
l) Derive an equation for the fundamental condition for nuclear magnetic resonance absorption. (2 marks)
m) Explain the difference between Type I and Type II superconductors. (1 mark)

SECTION B

Attempt any TWO questions in this section OUESTION 2 (20 MARKS)

a) State the **THREE** basic assumptions of the Drude model of free electron theory. (3 marks)

b) Show that the magnetization of a two-level paramagnetic system in the limiting case for which

$$\frac{\mu B}{k_B T} \ll 1 \text{ is given by } M = N \frac{\mu^2 B}{k_B T}$$
(7 marks)

c) Derive the general expression for the molar heat capacity according to Einstein's theory of specific heat. (10 marks)

QUESTION 3 (20 MARKS)

- (a) Using the classical free electron theory of solids, derive the equation for the conductivity of a metal in the form $\sigma = \frac{ne^2\tau}{m}$ where each symbol has its usual meaning. (5 marks)
- b) The element sodium has a density $0.97 \times 10^{-3} kgm^{-3}$, relative atomic mass 23 and electrical conductivity $2.1 \times 10^7 \ \Omega^{-1}m^{-1}$. Determine the mobility of electrons in sodium. (5 marks)

c) Show that the Fermi-Dirac distribution function is given by $\frac{n_i}{g_i} = \left(e^{\left(\frac{\varepsilon_i - \mu}{k_B T}\right)} + 1\right)^{-1}$ where the

symbols have their usual meanings

QUESTION 4 (20 MARKS)

a) Obtain the dispersion relation governing the propagation of a longitudinal on a vibrating

linear monatomic lattice in the form $\omega = 2\sqrt{\frac{K}{M}} \left| \sin \frac{1}{2} ka \right|$ where the symbols have their usual meanings. (15 marks)

(10 marks)

b) Provide a graphical representation of the dispersion relation in 4(a).	(2 marks)
c) Determine the maximum value of phase velocity of the waves in 4(a).	(3 marks)

QUESTION 5 (20 MARKS)

a) Outline **any FIVE** lattice types in three-dimensions. (5 marks) b) Present a derivation of equation for density of states in the compact form $\rho(\varepsilon) = \frac{3N}{2\varepsilon}$, hence state the physical interpretation of this compact form. (15 marks)