JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
 UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
 $4^{\text {TH }}$ YEAR $1^{\text {ST }}$ SEMESTER 2018/2019 ACADEMIC YEAR
 MAIN
 REGULAR

COURSE CODE: SPH 401
COURSE TITLE: SOLID STATE PHYSICS
EXAM VENUE:
STREAM: EDUCATION

DATE:
EXAM SESSION:
TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful constants
Mass of an electron $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
Planck's constant $h=6.63 \times 10^{-34} \mathrm{Js}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

SECTION A

QUESTION 1 (30 MARKS)

a) Define the following terms as used in Solid state Physics.
(i) Degeneracy
(ii) Crystal
(iii) Phonons
(iv) Lattice
b) Explain the formation of a crystal
c) Starting with the time-dependent Schroedinger equation, obtain the time evolution operator.
d) The plane intercepts in a crystal occur $3 \vec{a}, 2 \vec{b}, 2 \vec{c}$. Determine the Miller indices of the plane, hence obtain the interplanar distance given that the lattice parameter is a.
e) Given that Iron has a Fermi energy of 11.1 eV , calculate the radius k_{F} of the Fermisphere by assuming that electrons in Iron have an effective mass equal to the free electron mass.
(3 marks)
f) By defining $x=\left(\frac{\varepsilon_{i}-\mu}{k_{B} T}\right)$ in the Fermi-Dirac distribution function, show that the average population of an eigenstate for fermions cannot exceed 1.
g) Outline any TWO characteristics of Bose-Einstein distribution.
h) State the paradox in the Drude's free electron model hence explain how this paradox was removed by Sommerfeld.
(2 marks)
i) Assuming that the transverse and longitudinal waves have a common velocity, show that the limiting frequency in the Debye theory of specific heat is given by $v_{m}=\left(\frac{3 N}{4 \pi V}\right)^{\frac{1}{3}} c$ where the symbols have their usual meanings.
(2 marks)
j) A crystal lattice has a lattice constant a. By modeling a section of the lattice between two lattice points separated by a distance a as a string of mass m and length a fixed on both ends and vibrating freely, show that the equation for the energy spectrum of the atoms is

$$
\begin{equation*}
E_{n}=n^{2} \frac{\hbar^{2} \pi^{2}}{2 m a^{2}} ; n=1,2, \ldots \tag{3marks}
\end{equation*}
$$

k) Distinguish between diamagnetic and paramagnetic substances.

1) Derive an equation for the fundamental condition for nuclear magnetic resonance absorption.
m) Explain the difference between Type I and Type II superconductors.

SECTION B

Attempt any TWO questions in this section
 QUESTION 2 (20 MARKS)

a) State the THREE basic assumptions of the Drude model of free electron theory.
(3 marks)
b) Show that the magnetization of a two-level paramagnetic system in the limiting case for which

$$
\begin{equation*}
\frac{\mu B}{k_{B} T} \ll 1 \text { is given by } M=N \frac{\mu^{2} B}{k_{B} T} \tag{7marks}
\end{equation*}
$$

c) Derive the general expression for the molar heat capacity according to Einstein's theory of specific heat.
(10 marks)

QUESTION 3 (20 MARKS)

(a) Using the classical free electron theory of solids, derive the equation for the conductivity of a metal in the form $\sigma=\frac{n e^{2} \tau}{m}$ where each symbol has its usual meaning.
b) The element sodium has a density $0.97 \times 10^{-3} \mathrm{kgm}^{-3}$, relative atomic mass 23 and electrical conductivity $2.1 \times 10^{7} \Omega^{-1} m^{-1}$. Determine the mobility of electrons in sodium.
c) Show that the Fermi-Dirac distribution function is given by $\frac{n_{i}}{g_{i}}=\left(e^{\left(\frac{\varepsilon_{i}-\mu}{k_{B} T}\right)}+1\right)^{-1}$ where the symbols have their usual meanings
(10 marks)

QUESTION 4 (20 MARKS)

a) Obtain the dispersion relation governing the propagation of a longitudinal on a vibrating linear monatomic lattice in the form $\omega=2 \sqrt{\frac{K}{M}}\left|\sin \frac{1}{2} k a\right|$ where the symbols have their usual meanings.
b) Provide a graphical representation of the dispersion relation in 4(a).
c) Determine the maximum value of phase velocity of the waves in 4(a).

QUESTION 5 (20 MARKS)

a) Outline any FIVE lattice types in three-dimensions.
b) Present a derivation of equation for density of states in the compact form $\rho(\varepsilon)=\frac{3 N}{2 \varepsilon}$, hence state the physical interpretation of this compact form. (15 marks)

