

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE

 1^{ST} YEAR 1^{ST} SEMESTER 2018/2019

MAIN REGULAR

COURSE CODE: SPH 802

COURSE TITLE: CLASSICAL ELECTRODYNAMICS

EXAM VENUE: STREAM: (M.Sc)

DATE: EXAM SESSION:

TIME: 3:00 HRS

INSTRUCTIONS:

1. Attempt question 1 (compulsory) and ANY other two questions.

- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

You may take:

gravitational acceleration, g, = 9.8 m s⁻²

(i)
$$\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$$

(ii)
$$\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$

(iii)
$$\nabla \times \nabla u = 0$$

(iv)
$$\nabla \cdot (\nabla \times \vec{A}) = 0$$

- (v) Divergence theorem $\oint_s \vec{A} \cdot \hat{n} \, da = \oint_v \nabla \cdot \vec{A} \, d\tau$
- (vi) Stoke's theorem $\oint_c \vec{A} \cdot \hat{n} \, dl = \int_s \text{curl } \vec{A} \cdot \hat{n} \, da$

(vii)
$$\nabla \left(\frac{1}{R}\right) = -\nabla'\left(\frac{1}{R}\right) = -\frac{\hat{R}}{R^2} = -\frac{\vec{R}}{R^3}$$

(viii) Gradient theorem $\int_a^b (\nabla f) \cdot dl = f(b) - f(a)$

Question 1

(a) Using the vector field

$$\vec{F}(x, y, z) = 5xyz\hat{\mathbf{i}} + y^2\hat{\mathbf{j}} + yz\hat{\mathbf{k}}$$

verify Stoke's theorem by integrating over the open surface S defined by the five sides of a cube measuring 1 m on a side and about the closed line l bounding S.

(4 Marks)

(b) Find the electric field a distance z above the midpoint of a straight line segment of length 2L which carries a uniform line charge λ .

(4 Marks)

(c) A metal sphere of radius a carries the charge Q. It is surrounded out to radius b by linear dielectric material of permittivity ϵ . Find the potential at the center relative to infinity.

(4 Marks)

- (d) (i) A radially dependent volume charge density $\rho_v = 50r^2$ C/m³ exists within a sphere of radius r = 0.05 m. Find the total charge q contained within the sphere.
- (ii) The same sphere in (d)(i) is now covered with angularly dependent surface charge density $\sigma = 2 \times 10^{-2} \cos^2 \theta \text{ C/m}^2$. Find the total charge on the sphere.

(6 Marks)

- (e) (i) Consider a plane wave travelling in the positive z-direction with the electric field at all times in the y-direction. Draw a schematic diagram to illustrate linear, elliptical and circular polarization of a plane wave in three dimensions.
- (ii) Draw a flow chart showing the steps to develop a method for the transmission of transverse electric waves in a hollow rectangular waveguide.

(4 Marks)

(f) Use the principle of conservation of charge to derive the equation of continuity.

(4 Marks)

(g) Show that the electric field \vec{E} in terms of the vector potential \vec{A} and scalar potential V can be written as

$$\vec{E} = -\nabla V - \frac{\partial \vec{A}}{\partial t}$$

(4 Marks)

Question 2

- (a) (i) Explain what is meant by polarization.
 - (ii) State the possible causes of polarization in dielectric materials.

(4 Marks)

(b) (i) Show that a volume charge density ρ_b and a surface charge density σ_b arising from bound charges of a dielectric are given by $\rho_b = -\nabla \cdot \vec{P}$ and $\sigma_b = \vec{P} \cdot \hat{n}$.

(3 Marks)

(ii) Show that the total bound charge of a polarized dielectric of finite extent is always zero.

(3 Marks)

- (c) (i) Find the integral relation for the dielectric displacement vector in a dielectric.
- (ii) Classify dielectrics on the basis of functional relationship between the polarization and dielectric fields.

(6 Marks)

Question 3

(a) Use Ampere's law in integral form to derive Maxwell's equation

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

(4 Marks)

- **(b)** (i) Show that $\nabla \cdot \vec{B} = 0$.
- (ii) Find $A(\vec{r})$ for an ininitely long filamentary wire which carries a current I up the z-axis.

(3,5 Marks)

(c) (i) Using the Poynting vector $\vec{S} = \vec{E} \times \vec{H}$, show that the total power flux over a closed surface is given by

$$-\oint_{s} \vec{S} \cdot d\vec{s} = \frac{\partial}{\partial t} \int_{v} \left[\frac{\vec{H} \cdot \vec{B}}{2} + \frac{\vec{E} \cdot \vec{D}}{2} \right] d\tau + \oint_{v} \vec{J} \cdot \vec{E} d\tau$$

where the symbols have their usual meanings.

(6 Marks)

(ii) Using Poynting theorem, evaluate the total power flux entering the closed surface s embracing a length l of a wire of radius a carrying a direct current I.

(4 Marks)

Question 4

(a) A spherical shell of radius R, carrying a uniform surface charge σ , is set spinning at angular velocity ω . Find the vector potential it produces at a radial distance \vec{r} .

(12 Marks)

(b) A magnetic field \vec{B} is applied to a cube of magnetic material b m on a side such that magnetization density \vec{M} is z-directed and varies linearly along the x-axis according to $\vec{M} = 10x\hat{e}_z$ A/m.

(6 Marks)

(c) Distinguish between linear and non-linear dielectrics.

(2 Marks)

Question 5

(a) A system of charged particles within a finite volume V is moving with a velocity \vec{v} , where both the electric and magnetic fields \vec{E} and \vec{B} exist. Show that the linear momentum is conserved and can be expressed as

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\vec{P}_{\text{mech}} + \vec{P}_{\text{field}} \right) = \oint_{s} \sum_{\beta} T_{\alpha\beta} \hat{n}_{\beta} \mathrm{d}a$$

where $T_{\alpha\beta}$ is the Maxwell stress tensor and \hat{n}_{β} is the outward normal unit vector.

(10 Marks)

(b) A sphere of radius R, centered at the origin, carries charge density

$$\rho(r,\theta) = k \frac{R}{r^2} (R - 2r) \sin \theta$$

where k is a constant and r and θ are spherical coordinates. Find the approximate potential for points on the z-axis, far from the sphere.

(10 Marks)