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Instructions: 

 

Answer  question1 and any other two questions 

1. Show all the necessary working 

2. Candidates are advised not to write on the question paper 

3. Candidates must hand in their answer booklets to the invigilator while in the 

examination room 
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QUESTION 1 (30 MARKS) 

(a) Explain the following terms as used in Set theory    (4 marks) 

(i) Subset  

(ii) Union of sets 

(iii) Intersection of sets 

(iv) Null set 

 

(b) Determine the power set P(A) of { , , , }A a b c d     (4 marks) 

(c) Prove that 
2 2

2 2

sin 3cos 1
2

sin cos

 

 

 



      (6 marks) 

(d) Convert each of the following binary numbers to their decimal equivalents. 

(i) 101010        (3 marks) 

(ii) 10011.10011        (4 marks) 

(e) Let p be “it is cold” and let q be “it is raining”. Write a simple sentence which describe 

each of the following statements.      (4 marks) 

(i) p  

(ii) p q  

(iii) p q  

(iv) q p  

(f) Construct the truth table of ( )p q        (5 marks) 

 

QUESTION 2 (20 MARKS) 

 

(a) Let {1,2,3,4,5,6,7,8,9}U  , {2,4,6,8}A  , {1,3,4,5,7}B   and {7,8}C  . Find: 

(i) A C         (1 mark) 

(ii) cB C         (2 marks) 

(iii)  ( )
c

cA B C         (4 marks) 

(b) Prove the following distributive law of set operation.   (4 marks) 

( ) ( ) ( )A B C A B A C       

 

(c) On a standard three-circle Venn diagram: 

(i) Shade the regions corresponding to the set expression  

( ) ( )CP Q P R         (4 marks) 

 

(ii) Show that ( ) ( ) ( )A B C A B A C         (5 marks) 
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QUESTION 3 (20 MARKS) 

(a) Verify that: 

(i) 
cos( ) 1 tan tan

cos( ) 1 tan tan

   

   

 


 
      ( 5 marks) 

 

 

(ii) 2cos 2 1 2sin          (3 marks) 

 

(b) Solve the equation 215cos 7 cos 2 0x x    for 0 2 cx     (6 marks) 

 

(c) Taking 15 60 45  , find the value of the sine and the cosine of 015  (6 marks) 

 

QUESTION 4 (20 MARKS) 

 

(a) Convert each of the following decimal numbers to their binary equivalents: 

(i) 87         (4 marks) 

(ii) 34.75        (4 marks) 

 

(b) Convert : 

(i) 
163 .A F C  to decimal equivalent.     (4 marks) 

(ii) 
10250.25  to hexadecimal equivalent.    (4 marks) 

 

(c) Solve the following binary arithmetic problems: 

(i) 

1111

111         (2 marks) 

(ii) 
1 0 0 0 1

1 1 0
       (2 marks) 
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QUESTION 5 (20 MARKS) 

 

(a) Let p denote “He is very rich” and let q denote “He is happy”. Write each of the 

following statement in symbolic form using p and q. ( Note that “He is poor” and “He is 

unhappy” are equivalent to p and q   respectively).      (4 marks) 

(i) If he is rich, then he is unhappy. 

(ii) He is neither rich nor happy. 

(iii) It is necessary to be poor in order to be happy.    

(iv) To be poor is to be happy 

 

 

(b) Using a truth table, verify that: 

(i) ( )p p q    is a tautology.      (4 marks) 

(ii) ( ) ( )p q p q    is a contradiction.     (4 marks) 

 

(c) Let a, b be any element in a Boolean algebra B . Prove that: 

(i) a a a          (2 marks) 

 

(ii) ( )a a b a           (2 marks) 

 

(d) Given that the set 
mD of divisors of m is a bounded, distributive lattice with 

( , )a b a b lcm a b     and gcd( , )a b a b a b    . Show that 
mD  is a Boolean algebra 

if m is square free.        (4 marks) 

 


