# JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE 

# UNIVERSITY DRAFT EXAMINATION FOR MSC IN APPLIED MATHEMATICS 

$1^{\text {st }}$ YEAR $1^{\text {st }}$ SEMESTER 2017/2018 ACADEMIC YEAR
KISUMU CAMPUS

```
COURSE CODE: SMA 807
COURSE TITLE: COMPLEX ANALYSIS I
EXAM VENUE:
STREAM: MSc Y1S1
TIME: 3 HOURS
EXAM SESSION:
```


## Instructions:

Answer any three questions

1. Show all the necessary working
2. Candidates are advised not to write on the question paper
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

## Question1 [20 marks]

(a) Express $(1)^{1 / 6}$ in rational Cartesian form.
[6marks]
(b) .Let $D$ be a rectangular region bounded by lines $x=0, y=0, x=2$ and $y=1$.

Define the mapping $\omega(z)=(12+i) z+(1+2 i)$ on $D$ into $D^{\prime}$.
(i) Show that $\omega$ is a conformal mapping. (ii) Obtain the translation, rotation and dilation factor, of $D$ into $D^{\prime}$ [5marks]
(c) Classify the singularities of the complex function.

$$
\begin{equation*}
f(z)=\frac{1}{z-i}-\frac{1}{z} \text { (ii) } f(z)=\frac{\sin z}{z}, \quad \text { (iii) } f(z)=z^{3 / 2} \tag{i}
\end{equation*}
$$

(iv) $f(z)=\frac{z}{\sin z}$ [4marks]
(d) Suppose $f(z)=z^{3}$ and $\Delta z=z-z_{0}$, determine the $\lim _{\Delta z \rightarrow 0}\left\{\frac{f(z)-f\left(z_{0}\right)}{\Delta z}\right\}$ and hence find $f^{\prime}\left(z_{0}\right)$.

Question 2 [20 marks]
(a) If $f(z)=z \bar{z}$ find $\lim _{z \rightarrow z_{0}}\left\{\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right\}$. Discuss the existence $f^{\prime}\left(z_{0}\right)$, the derivative of $f(z)$ on the complex plane.
(b) Find all the points at which the function $f(z)=x^{2}-y^{2}+x+i(2 x y-y)$ is analytic. [4 marks]
(c) Evaluate the integral : $\oint_{|z|=3} \frac{z}{\left(z^{2}-9\right)^{3}} d z$
[6 marks]
(d) Prove that $u=e^{-x}(x \sin y-y \cos y)$ is harmonic.

## Question 3 [20 marks]

Let $D$ be the triangular region bounded by lines $x=1, y=1$ and $x+y=1$ as shown figure 1 below. Find $D^{\prime}$ the image of $D$ under the mapping $\omega(z)=z^{2}+(1+i)$.

x

Z -PLANE
Fig. 1
[14 marks]
Determine explicitly the equations governing the arc lengths of $D^{\prime}$.
Give the coordinates of $D^{\prime}$ and sketch $D^{\prime}$ on the $u-v$ plane.
[6 marks

## Question 4 [20 marks]

(a) Evaluate the integral $\int_{C} z^{2} d z: C$ is the curve $y=\frac{1}{x^{2}}$ from $z=1+i$ to $z=3+\frac{i}{19}$.[8 marks]
(b) Suppose that a function $f$ is analytic in a star $D$. Suppose further that $C$ is a closed contour lying in $D$. Prove that $\mathbb{T}_{C} f(z) d z=0$.
(c) Determine the value of the contour integral $\left\{_{\{|z|=3} \frac{e^{z}+\sin z}{z^{2}-25} d z\right.$ where the contour of integration is the circle centre at 0 and with radius 3 followed in the positive (anticlockwise) direction.
[7 marks]
Question 5 [20 marks]
(a) (i)State and prove Rouche's theorem.
[4marks]
(ii)Determine the number of $G(z)=e^{2}-4 z^{2}+8 z-0.1$
(b)Determine the value of the contour integral $\tilde{f}_{|z|=10} \frac{e^{t z}}{z^{2}(z-10)\left(z^{2}+2 z+2\right)} d z$ where the contour of integration is the circle centre at 0 and radius 10 followed in the positive (anticlockwise) direction.
[10marks]
(c) Evaluate the improper integral I $=\int_{0}^{\infty} \frac{\log ^{2} x}{x^{2}-1} d x$.
[4 marks]

