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Question1 [20 marks]  
 

 (a ) Express  
1 6

1  in rational Cartesian form.     [6marks] 

         

 (b) .Let D  be a rectangular region bounded by lines 0 , 0 , 2 1x y x and y       .  

Define the mapping       12 1 2z i z i     on D  into D . 

(i) Show that  is a conformal mapping. (ii) Obtain the translation , rotation and dilation factor , of D  into D  

                          [5marks] 

(c) Classify the singularities of the complex function. 

(i)  
1 1

f z
z i z

 


 (ii)  
sin

,
z

f z
z

 (iii)   3 2f z z     (iv)  
sin


z

f z
z

 [4marks] 

 

       

     (d) Suppose   3f z z and
0z z z   , determine the 

   0

0
lim
z

f z f z

z 

 
 

 
  

 and hence find  0f z .                                               [5 marks] 

 

Question 2 [20 marks] 
 

(a) If   f z zz  find 
   

0

0

0

lim
z z

f z f z

z z

 
 

 
. Discuss the existence  0f z , the derivative of  f z on    

      the complex plane.                   [6marks] 

 

(b ) Find all the points at which the function    2 2 2    f z x y x i xy y is analytic. [4 marks] 

 

(c) Evaluate the integral   : 
 

33 2 9



 z

z
dz

z
            [6 marks] 

(d) Prove that    sin cos xu e x y y y is harmonic.         [4 marks]  
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Question 3 [20 marks] 
 

Let D  be the triangular region bounded by lines 1 , 1 1x y and x y       as shown   figure 1 below. Find 

D the image of D under the mapping    2 1z z i    . 

 

 

                      y 

 

                                                             1x         

                                      a                          1x y                        c 1y   

 

                                                                           
b

                                                                                

                                                                                           

                                                                                                                   x 

 z -PLANE          Fig.1           [14 marks] 

 

Determine explicitly the equations governing the arc lengths ofD .  

Give the coordinates of D and sketch D  on the u v plane.   [6 marks 

 

Question 4 [20 marks] 

(a) Evaluate the integral 
2

2

1
: 1 3

19
C

i
z dz C is thecurve y from z i to z

x
     . [8 marks] 

(b) Suppose that a function f is analytic in a star D  . Suppose further that C  is a closed contour lying in 

D . Prove that    0
C

f z dz .                    [5marks] 

(c) Determine the value of the contour integral 
23

sin

25

z

z

e z
dz

z



  where the contour of integration  is the 

circle  centre at 0  and with radius 3 followed in the positive (anticlockwise)  direction.     
                      [7 marks] 

Question 5 [20 marks] 
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(a) (i)State and prove Rouche’s theorem.       [4marks] 

(ii)Determine the number of   24 8 0.1zG z e z z                    [2marks] 

(b)Determine the value of the contour integral 
  2 210 10 2 2   


tz

z

e
dz

z z z z
 where the contour of 

integration  is the circle  centre at 0  and radius 10 followed in the positive (anticlockwise)  direction.    

           [10marks] 

(c)        Evaluate the improper integral 

2

20

log

1

x
I dx

x




 .    [4 marks] 

 


