

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY DRAFT EXAMINATION FOR MSC IN APPLIED MATHEMATICS

1st YEAR 1st SEMESTER 2017/2018 ACADEMIC YEAR KISUMU CAMPUS

COURSE CODE: SMA 807

COURSE TITLE: COMPLEX ANALYSIS I

EXAM VENUE: STREAM: MSc Y1S1

TIME: 3 HOURS EXAM SESSION:

Instructions:

Answer any three questions

- 1. Show all the necessary working
- 2. Candidates are advised not to write on the question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Question1 [20 marks]

(a) Express $(1)^{1/6}$ in rational Cartesian form.

[6marks]

- (b) .Let D be a rectangular region bounded by lines x=0, y=0, x=2 and y=1. Define the mapping $\omega(z)=(12+i)z+(1+2i)$ on D into D'.
- (i) Show that ω is a conformal mapping. (ii) Obtain the translation, rotation and dilation factor, of D into D' [5marks]
- (c) Classify the singularities of the complex function.

(i)
$$f(z) = \frac{1}{z-i} - \frac{1}{z}$$
 (ii) $f(z) = \frac{\sin z}{z}$, (iii) $f(z) = z^{3/2}$ (iv) $f(z) = \frac{z}{\sin z}$ [4marks]

(d) Suppose
$$f(z) = z^3$$
 and $\Delta z = z - z_0$, determine the $\lim_{\Delta z \to 0} \left\{ \frac{f(z) - f(z_0)}{\Delta z} \right\}$

and hence find $f'(z_0)$.

[5 marks]

Question 2 [20 marks]

(a) If
$$f(z) = z\overline{z}$$
 find $\lim_{z \to z_0} \left\{ \frac{f(z) - f(z_0)}{z - z_0} \right\}$. Discuss the existence $f'(z_0)$, the derivative of $f(z)$ on

the complex plane.

[6marks]

- (b) Find all the points at which the function $f(z) = x^2 y^2 + x + i(2xy y)$ is analytic. [4 marks]
- (c) Evaluate the integral : $\iint_{|z|=3} \frac{z}{\left(z^2-9\right)^3} dz$ [6 marks]
- (d) Prove that $u = e^{-x} (x \sin y y \cos y)$ is harmonic. [4 marks]

Question 3 [20 marks]

Let D be the triangular region bounded by lines x=1, y=1 and x+y=1 as shown figure 1 below. Find D' the image of D under the mapping $\omega(z)=z^2+(1+i)$.

Χ

Z-PLANE

Fig.1

[14 marks]

Determine explicitly the equations governing the arc lengths of D'. Give the coordinates of D' and sketch D' on the u-v plane. [6 marks

Question 4 [20 marks]

- (a) Evaluate the integral $\iint_C z^2 dz : C$ is the curve $y = \frac{1}{x^2}$ from z = 1 + i to $z = 3 + \frac{i}{19}$. [8 marks]
- (b) Suppose that a function f is analytic in a star D. Suppose further that C is a closed contour lying in D. Prove that $\iint_C f(z)dz=0$. [5marks]
- (c) Determine the value of the contour integral $\iint_{|z|=3} \frac{e^z + \sin z}{z^2 25} dz$ where the contour of integration is the circle centre at 0 and with radius 3 followed in the positive (anticlockwise) direction.

[7 marks]

Question 5 [20 marks]

- (a) (i)State and prove Rouche's theorem. [4marks] (ii)Determine the number of $G(z) = e^z - 4z^2 + 8z - 0.1$ [2marks]
- (b)Determine the value of the contour integral $\iint_{|z|=10} \frac{e^{tz}}{z^2(z-10)(z^2+2z+2)} dz$ where the contour of

integration is the circle centre at 0 and radius 10 followed in the positive (anticlockwise) direction.

[10marks]

(c) Evaluate the improper integral
$$I = \int_0^\infty \frac{\log^2 x}{x^2 - 1} dx$$
. [4 marks]