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OASIS OF KNOWLEDGE



Question One (20 mks) 

 

a) A car dealer knows from experience that out of 20 vehicles sold, 15% will have 

insignificant defects, 60% will be fairly damaged and 25% will have severe defects. He 

wants to determine the probability that out of 20 Vehicles 

 

i) A maximum of 8 will be severely damaged (Hint: p=0.25)             (4 mks) 

ii) At least 12 will have moderate defects (Hint: p=0.6)                (4 mks) 

 

 

b) Consider the data in the table below 

 

 Number of group 

Members in a 

Committee 

  

Gender Nominated Non nominated  

Male x m-x m 

Female r-x n-(r-x) n 

Total r m+n-r m+n 

 

i) Obtain the probability of including a given number of males in the committee  p(X=x)  

(3 mks) 

 

ii) Obtain E(X)                     (3 mks) 

 

iii) Obtain Var(X)                       (3 mks) 

 

 

c) Suppose  

 

𝑓(𝑥, 𝑦) = {
(𝑥 + 𝑦);              0 ≤ 𝑥 ≤ 1;  0 ≤ 𝑦 ≤ 1

0;                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

Obtain 

i) E(XY)                      (3 mks) 

ii) Cov(X, Y)                     (3 mks) 

iii) Cor(X, Y)                     (4 mks) 

Assuming X and Y are conditionally independent 

 

 

 



d) Let X have a density function 

 

 

𝑓(𝑥) = {
𝑒−𝑥  ;                                        𝑥 > 0

0    ;                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Find the new density function of a random variable Y=X2            (6 mks) 

 

Question Two (20 mks) 

 

Consider 

 

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 {−

1

2𝜎2
(𝑥 − 𝜇)2};   −∞ < 𝑥 ∞; −∞ < 𝜇 ∞ 

 

Use moment generating technique to obtain 

 

i) E(X)                      (10 mks) 

ii) Var(X)                      (10 mks) 

 

Question Three (20 mks) 

Suppose that a joint pdf of two random variables X and Y is as follows 

 

𝑓(𝑥, 𝑦) = {
𝑐(𝑥2 + 𝑦);            𝑓𝑜𝑟  0 < 𝑦 ≤ (1 − 𝑥2)

0;                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Determine 

 

a) Value of the constant c                 (4 mks) 

b) Cov(X, Y)                                (4 mks) 

                

c) Pearson cor(X, Y)                   (4 mks) 

d) Regression equation between X and Y                 (4 mks) 

e) Obtain coefficient of determination and interpret the fit statistic             (4 mks)     

                  

Question Four (20 mks) 

Describe the regression between x and y from font distribution function given by 

 

𝑓(𝑥, 𝑦) = {
2𝑥𝑦;              0 < 𝑦 < 𝑥;  0 < 𝑥 < 2

0;                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Obtain 



 

i) Cov(X, Y)                               (4 mks) 

ii) The correlation coefficient                   (4 mks) 

iii) The regression equation between X and Y                  (4 mks) 

iv) Interpret the regression parameters                  (4 mks) 

v) Sketch a scatter diagram between X and Y including line of best fit              (4 mks) 

 

Question Five (20 mks) 

Let X1,X2, … … … . . X𝑛,be a random variables such that X𝑖~  𝑥
2(𝑟𝑖); 𝑖 = 1,2, … … , 𝑛 Let each  X𝑖, 

and   X𝑗, be independent. Obtain joint pdf of X𝑖1, and   X2,, hence of 

 

 

𝑓 =

𝑥1
𝑟1

⁄
𝑥2

𝑟2
⁄

                           {0 < 𝑥𝑖 < ∞          ⩝       𝑖 = 1, ⋯ , 𝑛}     


