

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 4TH YEAR 1ST SEMESTER 2018/2019 ACADEMIC YEAR REGULAR (MAIN)

COURSE CODE: SMA 403

COURSE TITLE: TOPOLOGY

EXAM VENUE:

DATE:

STREAM: (BSc. Actuarial)

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

a)	Let $A = \{1, 2, 3\}$, determine the power set of A.	(3mks)

- b) Define the following terms:
 - i) A limit point.
 - ii) A closed set.
 - iii) A topological space.
- c) Given a set $X = \{x, y, z\}$ and $\tau = \{\emptyset, X, \{x\}, \{z\}, \{x, z\}\}$. Is τ a topology on X? (4mks)

(7mks)

- d) Let (X, τ) be a topological space. Then prove that a subset $S \subseteq X$ is closed if and only if it contains all its limit points. (6mks)
- e) Let $X = \mathbb{R}$. Define a metric $d = \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by d(x, y) = |x y|. Show that d(x, y) is a metric space. (6mks)
- f) Let $X = \{x, y, z\}, \tau_1 = \{X, \emptyset, \{x\}, \{z\}, \{y, z\}\}$ and $\tau_2 = \{X, \emptyset, \{z\}, \{y, z\}\}$. Determine i) the coarseness of the topologies. (2mks) ii) $\tau_1 \cup \tau_2$. (1mk) iii) $\tau_1 \cap \tau_2$. (1mk)

QUESTION TWO (20 marks)

- a) If $f: X \to Y$ and $g: Y \to Z$ are homeomorphisms, then show that the composition $g \circ f: X \to Z$ is also a homeomorphism. (5mks)
- b) Let the function $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = 3x + 1. Show that f is a homeomorphism. (5mks)
- c) Given the set X = {a, b, c, d, e} and a collection of some of its subsets τ = {X, Ø, {d}, {b, c}, {b, c, e}, {a, b, c, d}}. Let A = {a, c, d}. Find

 The derived set of A.
 (5mks)
 - ii) the interior points of A. (3mks)
 - iii) the exterior points of *A*. (2mks)

QUESTION THREE (20 marks)

- a) Define the following terms
 - i) A T1 topological space. (2mks)
 - ii) Hausdorff space. (2mks)
- b) Let (X, τ) be a metrizable topological space. Show that (X, τ) is Hausdorff.
- (6mks)
 c) Show that a topological space (*X*, *τ*) is *T*1 if and only if points in *X* are closed sets.

QUESTION FOUR (20 marks)

- a) Define the following terms:
 - i) relative topology. (2mks)
 - iii) a continuous function. (2mks)
- b) Consider the following topologies on $X = \{1,2,3,4,5\}$ $\tau = \{X, \phi, \{1\}, \{1,2\}, \{1,3,4\}, \{1,2,3,4\}, \{1,2,5\}\}$. List the members of the relative topology τ_A on $A = \{1,2,4\}$. (8mks)
- c) Consider the sets $X = \{w, x, y, z\}$ and $Y = \{1,3,4,6\}$. Let $\tau_x = \{\emptyset, X, \{w\}, \{z\}, \{y, z\}, \{w, x, z\}\}, \tau_y = \{\emptyset, Y, \{4\}, \{6\}, \{3,6\}\{1,4,6\}\}$. Let $g: X \to Y$ be defined as g(w) = 4, g(x) = 1, g(y) = 3 and g(z) = 6, determine whether g is a continuous function or not. (8mks)

QUESTION FIVE (20 marks)

- a) Let (X, τ) be a topological space. Then show the following:
 - i) Ø and X are closed.
 - ii) Arbitrary intersections of closed sets are closed.
 - iii) Finite unions of closed sets are closed. (12mks)

b) Consider the set $A = \{1, 2, 3, 4, 5\}$ and $\mathfrak{B} = \{\{2\}, \{3, 5\}, \{1, 4\}, \emptyset\}$. Determine

- i) \mathfrak{B} is a basis for the topology on *X* (5mks)
- ii) The topology τ on X generated by \mathfrak{B} (3mks)