

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS 1ST YEAR 1ST SEMESTER 2018/2019 ACADEMIC YEAR MAIN CAMPUS

COURSE CODE: SAS 803

COURSE TITLE: ESTIMATION THEORY

EXAM VENUE:

STREAM:

DATE:

EXAM SESSION:

TIME: 3.00 HOURS

Instructions:

- 1. Answer ANY 3 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (20 MARKS)

- a) Explain clearly what is meant by weak consistency. (2marks)
- b) Let $X_1, X_2, ..., X_n$ be iid random variables from the uniform u(a, b) distribution. Suppose $T_n = 2\bar{x} - a$. Show that T_n is weakly consistent for *b* when *a* is known (10marks)
- c) Let $X_1, X_2, ..., X_n$ be iid random variables from a population having p.d.f $f(x) = \frac{1}{\theta^{n\Gamma(n)}} e^{-x/\theta} x^{n-1}$: $x > 0, \theta > 0$. Show that $\frac{\Sigma x^2}{n^2(n+1)}$ is unbiased for θ^2 (8marks)

QUESTION TWO (20 MARKS)

- a) Distinguish between method of moment and Maximum Likelihood method of estimation (5marks)
- b) Let X_1, X_2, \dots, X_n be iid random variables from a population having p.d.f

$$f(x) = \frac{1}{\theta^{m\Gamma(m)}} e^{-x/\theta} x^{m-1} : x > 0, m > 0$$
.
Assuming that

i. m is known

- ii. m = 2, find MLE of θ (10 marks)
- c) Find moment's estimator of θ given that;

$$f(x) = \theta^{x} (1 - \theta)^{1 - x}; x = 0, 1; \ \theta \in (0, 1)$$
(5 marks)

QUESTION THREE (20 MARKS)

a) Distinguish sufficiency from completeness as used in parameter estimation theory.

(4 marks)

b) Let $X_1, X_2, ..., X_n$ are iid random variables from a population with p.d.f

 $f(x) = \frac{1}{\beta(\theta, 2)} x^{\theta - 1} (1 - x) : \quad 0 < x < 1, \theta > 0$ By the factorization criterion, find a sufficient statistic for θ . (8marks)

c) Let $X_1, X_2, ..., X_n$ are iid $N(\mu, \sigma^2)$. Find a complete sufficient statistic for the population mean and variance. (8 marks)

QUESTION FOUR (20MARKS)

a) Let $X_1, X_2, ..., X_n$ be iid $N(\mu, \sigma^2)$ random variables where both mean and variance are unknown. Find the UMVUE of

i.
$$\mu$$

ii. σ^2
iii. $d(\mu) = \mu^2$ (10marks)

b) Let $X_1, X_2, ..., X_n$ be iid Poisson random variables with $f(x_i, \theta) = \frac{e^{-\theta} \theta^{x_i}}{x_i!}$ x = 0,12, ...Find a UMVUE of θ^2 . Does there exist a MVBUE of θ^2 . (10marks)

QUESTION FIVE (20 MARKS)

a) Find the estimator of α and β in

$$f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma\alpha\Gamma\beta} x^{\alpha-1} (1-x)^{\beta-1}, & 0 < x < 1, \alpha > 0, \beta > 0\\ 0, & otherwise \end{cases}$$

By method of moment.

,

- (12 marks)
- b) The following data represents the number of earning members (X) and the total monthly income (Y) hundreds of thousands of 15 randomly selected families in an area.

1	1	1	1	1	1	1	2	2	2	3	3	3	4	2
20	15.5	12	8.6	6	8	6	33.5	40.6	50	65.6	20	38	100	35

Assuming a linear relationship of *Y* and *X*, estimate the parameters by method of least squares. (8marks)