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QUESTION ONE [20 MARKS] 

(a). Show that every convergent sequence in T3-space has a unique limit.                      (10 marks) 

(b). Show that every T2-space is T1-but a subspace of a normal space is normal.            (6 marks) 

(c). Describe 4 applications of the study of topology to real life  giving examples.         (4 marks)                                                                                                               

 

QUESTION TWO [20 MARKS] 

(a). Show that any constant map between two topological spaces is continous.                (6 marks) 

(b). Show that a map defined by, “is homeomorphic to”  between topological spaces is an 

       equivalence relation.                                                                                                    (8 marks) 

(c). Prove that a normal space need not be regular.                                                           (6 marks) 

 

QUESTION THREE [20 MARKS] 

(a). Describe the separation axioms in topological spaces                                                 (4 marks) 

(b). Explain the meaning of cofinite topology, homotopy equivalence and null 

       homotopic map.                                                                                                     (6 marks) 

(c). Prove that the property of a space being Lindelof is topological.                              (10 marks) 

 



 

 

QUESTION FOUR [20 MARKS] 

(a). Describe the following aspects of general topology: Denseness; Essential  

       Connectedness; and Boundedness.                                                                        (6 marks) 

(b). Prove that all metric spaces are Hausdorff spaces.                                                (8 marks) 

(c). Prove that T1-property is hereditary.                                                                      (8 marks) 

 

 

QUESTION FIVE [20 MARKS] 

 (a). Let A be a topological space. Prove that a subset B of A is open in A if and only if B is a  

        neighbourhood of each point belonging to B.                                                            (4 marks) 

(b). Show that the discrete topology is indeed a topology.                                                (4 marks) 

(c). State without proofs: Tietze’s Extension Theorem and  Urysohn’s Lemma.            (6 marks) 

(d). Differentiate between a filter base and a net.                                                               (2 marks) 

(e). Show that the Euclidean topological space is non-trivial.                                           (4 marks) 

 

 

 

 


