

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTURIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

1st YEAR 1st SEMESTER 2018/2019 ACADEMIC YEAR

MAIN REGULAR

COURSE CODE: SMA 805

COURSE TITLE: GENERAL TOPOLOGY

EXAM VENUE: STREAM: (Msc. Pure Mathematics)

DATE: EXAM SESSION:

TIME:

Instructions:

- 1. Answer any THREE questions only
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE [20 MARKS]

(a). Show that every convergent sequence in T₃-space has a unique limit.
(b). Show that every T₂-space is T₁-but a subspace of a normal space is normal.
(c). Describe 4 applications of the study of topology to real life giving examples.
(4 marks)

QUESTION TWO [20 MARKS]

- (a). Show that any constant map between two topological spaces is continuous. (6 marks)
- (b). Show that a map defined by, "is homeomorphic to" between topological spaces is an equivalence relation. (8 marks)
- (c). Prove that a normal space need not be regular. (6 marks)

QUESTION THREE [20 MARKS]

- (a). Describe the separation axioms in topological spaces (4 marks)
- (b). Explain the meaning of cofinite topology, homotopy equivalence and null homotopic map. (6 marks)
- (c). Prove that the property of a space being Lindelof is topological. (10 marks)

QUESTION FOUR [20 MARKS]

(a). Describe the following aspects of general topology: Denseness; Essential
Connectedness; and Boundedness.

(b). Prove that all metric spaces are Hausdorff spaces.

(c). Prove that T₁-property is hereditary.

(8 marks)

QUESTION FIVE [20 MARKS]

(a). Let A be a topological space. Prove that a subset B of A is open in A if and only if B is a	
neighbourhood of each point belonging to B.	(4 marks)
(b). Show that the discrete topology is indeed a topology.	(4 marks)
(c). State without proofs: Tietze's Extension Theorem and Urysohn's Lemma.	(6 marks)
(d). Differentiate between a filter base and a net.	(2 marks)
(e). Show that the Euclidean topological space is non-trivial.	(4 marks)