JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

FIRST YEAR FIRST SEMESTER EXAMINATIONS 2013
MASTER OF SCIENCE IN APPLIED MATHEMATICS
SMA 817: ORDINARY DIFFERENTIAL EQUATIONS I
INSTRUCTION: Answer any THREE questions. QUESTION ONE (20 MARKS)
a) Solve the differential equations
i) $2 \frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+y=\left(t^{2}+1\right) e^{t}$
ii) $\quad \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y-5 e^{x}=0$
b) Show that for a second order differential equation of the form
$a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$ for $f(x) \neq 0$ and taking $y=c_{1} u_{1}(x)+c_{2} u_{2}(x)$ to be a solution of $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$. By replacing arbtrary constants c_{1} and c_{2} by $v_{1}(x)$ and $v_{2}(x)$ then we could solve the pair of simultaneous equations

$$
\begin{align*}
& v_{1}^{\prime} u_{1}+v_{2}^{\prime} u_{2}=0 \\
& v_{1}^{\prime} u_{1}^{\prime}+v_{2}^{\prime} u_{2}^{\prime}=f(x) \tag{7marks}
\end{align*}
$$

To obtain the solution to the particular integral $y=u_{1} v_{1}+u_{2} v_{2}$

QUESTION TWO (20 MARKS)

a) Show that $u_{1}=e^{x}$ is a solution to the differential equation $(x-1) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0$, hence use the reduction of order method to find the second linearly independent solution $u_{2}(x)$
b) Find all the solutions of the equation $\dot{X}=\left(\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right) \vec{X}$

QUESTION THREE (20 MARKS)

Given the system of first order ordinary differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=5 x+y+3 z \\
& \frac{d y}{d t}=x+7 y+z \\
& \frac{d z}{d t}=3 x+y+5 z
\end{aligned}
$$

a) Express the system in the matrix form $\underline{\dot{X}}=A \underline{X}$
b) Show that $\underline{u}=[1,1,1]^{t}, \underline{v}=[-1,0,1]^{t}$ are eigenvectors of A
c) Determine $\Phi(t)$, the fundamental matrix of the system
d) Obtain \underline{X} the general solution of the system

QUESTION FOUR (20 MARKS)

Given the system of nonlinear differential equations

$$
\frac{d x}{d t}=-2 x y
$$

$$
\frac{d y}{d t}=-x+y+x y-y^{2}
$$

(a)Find all its critical points
(8 marks)
(b) Determine the stability nature of each of the critical points in part (a)

QUESTION FIVE (20 MARKS)

a) Prove that if $x_{1}(t)$ and $x_{2}(t)$ are linearly independent on $L(x)=0$ on an interval I then the wronskian $W\left[x_{1}(t), x_{2}(t)\right] \neq 0$
b) Find $e^{A t}$ if $A=\left(\begin{array}{llc}1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 3 & 1\end{array}\right)$

