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QUESTION 1 [COMPULSORY] [30 Marks]

(a) Define the following terms is respect of securities trading:

(i)Intrinsic value [2 Marks]

(ii)Hedging [2 Marks]

(iii)Short position [2 Marks]

(b)Consider a three-period binomial tree model for a stock price process

St , under which the stock price either rises by 18% or falls by 15% each

month. No dividends are payable. The continuously compounded risk-free

rate is 0.25% per month. Let S0 = 85. Consider a European put option on

this stock, with maturity in three months (i.e. at time t = 3) and strike

price Kshs.90.

(i) Calculate the price of this put option at time t = 0. [6 Marks]

(ii) Calculate the risk-neutral probability that the put option expires out-

of-the money. [2 Marks]

(c) Consider a particular stock and denote its price at any time t by St .

This stock pays a dividend D at time T
′

.

Let Ct and Pt be the price at time t of a European call option and European

put option respectively, written on S, with strike price K and maturity

T ≥ T ′ ≥ t. The instantaneous risk-free rate is denoted by r.

Prove the put-call parity in this context by adapting the proof of standard

put-call parity. [6 Marks]

(d)Let pt denote the value at time t (measured in years) of a European put

option on a non-dividend-paying stock with price St . The option matures
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at time T and has a strike price K. The continuously compounded risk-free

rate of interest is r. Derive a lower bound for pt in terms of St and K.

[6 Marks]

(e)A binomial lattice is used to model the price of a non-dividend-paying

share up to time T . The interval (0, T ) is subdivided into a large number

of intervals of length δt = T
n . It is assumed that, at each node in the

lattice, the share price is equally likely to increase by a factor u or decrease

by a factor d , where u = eµ+σ
√
δt and d = eµ−σ

√
δt . The movements at

each step are assumed to be independent.

Show that, if the share price makes a total of Xn up jumps, the share price

at time T will be:

ST = S0exp

{
+σ
√
T

(
2Xn − n√

n

)}
where S0 denotes the initial share price. [8Marks]
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QUESTION 2 [20 Marks]

Consider a European call option with price ct written on an underlying

non-dividend paying security with price St at current time t.

(a) State whether each of the following changes in underlying factors would

increase or reduce the price of this option:

(i) a fall in the price of the underlying security

(ii) an increase in the strike price of the option

(iii) an increase in the volatility of the underlying security price

(iv) a fall in the risk-free rate of interest

You should assume that each change occurs on a standalone basis, i.e.

all other factors are unchanged.

[4 Marks]

(b) Explain each of your statements in part (a). [8 Marks]

(c)Consider a European put option with price pt written on the same un-

derlying security, with the same strike price K and the same maturity T

as the call option described above.

The continuously compounded risk-free rate of interest is r.

(i) Write down a formula that relates the values of ct and pt.[4 Marks]

The call option has value Kshs.0.50 at time t = 0, and the put option has

value Kshs.1.00. Both options are written on a security with current value

S0 = 5, and both options have strike price Kshs.6.00 and maturity T = 3

years.
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(ii) Determine the continuously compounded risk-free rate r.[4 Marks]

QUESTION 3 [20 Marks]

The current price of a non-dividend paying stock is Kshs.65 and its volatil-

ity is 25% per annum. The continuously compounded risk-free interest

rate is 2% per annum. Consider a European call option on this share with

strike price Kshs.55 and expiry date in six months time. Assume that the

Black-Scholes model applies.

(a)Calculate the price of the call option . [10 Marks]

(b)Define algebraically the delta of the call option. [2 Marks]

(c) Calculate the value of the delta of the call option. [4 Marks]

(d)Calculate the value of the delta of a European put option written on

the same underlying, with the same strike and maturity as above.

[4 Marks]

QUESTION 4 [20 Marks]

Consider a call option on a non-dividend paying stock S when the stock

price is Kshs.15, the exercise price, K, is Kshs.12, the continuously com-

pounded risk-free rate of interest is 2% per annum, the volatility is 20%

per annum and the time to maturity is three months. (a) Calculate the

price of the option using the Black-Scholes model. [10 Marks]

(b) Determine the (risk neutral) probability of the option expiring in the
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money. [2 Marks]

A special option called a digital cash-or-nothing option has a payoff in

three months time of:  1 ST < K

0 ST > K

(c) Calculate the price of the digital option. [4 Marks]

(d) Describe the limitations of the Black-Scholes model. [4 Marks]

QUESTION 5 [20 Marks]

Explain the similarities and differences in the following three interest rate

models:

• the Hull White model

• the Cox-Ingersoll-Ross model

• the Vasicek model

[20 Marks]


