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ABSTRACT 
In this paper we characterize norm-attainable elementary operators, we show that 𝛿𝑃,𝑄  is norm-attainable if both P 
and Q are norm-attainable and 𝛿𝑃,𝑄   is norm-attainable 𝛿𝑃,𝑄  if is normally represented. 
 
Classification: 46C15. 
 
Keywords: norm-attainability, normally represented, nonseparable Hilbert spaces. 
 
 
1. INTRODUCTION 
 
The norm of elementary operators has been a subject of many papers in operator theory but still it remains interesting to 
many mathematicians because calculating these norms requires finding a formula that involves their coefficients. Up-
to- date, there is no known formular for calculating the norm of an arbitrary elementary operator acting on a general 
Banach algebra. About the discussion of the norms of elementary operators one can trace back the work of Stampfli 
[15]. Properties of elementary operators have also been investigated under variety of aspects. Some interesting results 
about the Spectra, numerical ranges, boundedness, orthogonality and norms have been obtained. On our paper we have 
given properties of norm-attainable operators. Let H be an infinite dimensional complex nonseparable Hilbert space 
and ENA(H) be the set of all norm-attainable elementary operators. Let T: NA(H) → NA(H) be defined by                 
T(X) =  ∑ 𝑃𝑖𝑋𝑄𝑖

𝑛
𝑖=1  for all X ∈ NA(H) where𝑃𝑖  𝑄𝑖   are fixed in NA(H). We have the following examples of elementary 

operators.  
(i) the inner derivations 𝛿𝑃= PX – XP 
(ii) the generalized derivation 𝛿𝑃,𝑄= PX – XQ 
(iii) the basic elementary operator 𝑀𝑃,𝑄 = PXQ  
(iv) the Jordan elementary operator 𝑈𝑃,𝑄 = PXQ + QXP. An operator A ∈ B(H) is said to be norm-attainable if there 

exists a unit vector x ∈ H such that ∥Ax∥ = ∥A∥.  
 
Definition 1.1 A normed space in which every cauchy sequence is convergent is called a complete normed space or 
Banach space. 
 
Definition 1.2 A norm or length function on a vector space X is a nonnegative real valued functions ∥∥: X → R (real 
number) satisfying the following axioms: 

(i) ∥x∥ ≥ 0 ∀x ∈ X. 
(ii) ∥x∥ = 0 if and only if x = 0 ∀ x ∈ X. 
(iii) ∥λx∥ = |λ|∥x∥ ∀x ∈ X and λ is scalar. 
(iv) ∥x + y∥ ≤ ∥x∥ + ∥y∥∀ x, y ∈ X. 
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Definition 1.3 Let X and Y be two normed spaces. A mapping T: X → Y is called a linear operator if: 

(i) T(x + y) = T(x) + T(y)  ∀ x, y ∈ X. 
(ii) T(αX) = αT(x) ∀ x ∈ X and complex number α. 
(iii) T(αX + βy) = αT(x) + βT(y) ∀ x,y ∈ X and complex numbers α and β. 
(iv) T is bounded if there exists a constant K > 0 such that ∥Tx∥ ≤ K∥x∥ ∀ x ∈ X. 

 
Definition 1.4 For any two elements x and y belonging to an inner product space, we have 

∥x + y∥2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2). 
 
Definition 1.5 A normed space in which every cauchy sequence is convergent is called a complete normed space or 
Banach space. 
 
Theorem 1.6 A Banach space is a Hilbert space if and only if its norm satisfies the parallelogram law. 
 
Definition 1.7: A Hilbert space H is a complete inner product space. 
 
Definition 1.8: An operator A∈B(H) is said to be norm-attainable if there exists a unit vector x ∈ H such that  
∥Ax∥ = ∥A∥. 
 
Lemma 1.9: For an operator T∈B(H), the operator T is norm-attainable  if and only if its adjoint T* is norm-attainable. 
 
Definition 1.10: Let T:  𝐻 → 𝐻 the adjoint of T is T*: 𝐻 → 𝐻 such that ⟨Tx, y⟩ = ⟨x, T*y⟩ for all x, y∈ 𝐻. 
 
Definition 1.11: An operator T∈B(H) is said to be a projection if 𝑇2 = T and self adjoint if T = T*. 
 
Definition 1.12: A necessary and sufficient condition for an operator T to be normal is that ∥Tx∥ = ∥T*x∥ for any 
vector x ∈ H .  
 
Definition 1.13: An operator T∈B(H) is said to be normal if it commutes with its adjoint, that is TT* = T*T and 
unitary if  
 
Example 1.14: Let T : 𝑋 → 𝑋  be given by T= 2iI where I is the identity operator. Then T is normal since  
TT* = T*T= I. 

 TT* = (2iI)(2iI)* 
= (2Ii)(-2iI) 
= - 4i2 I 
= 4I 

and  
 T*T = (2iI)*(2iI) 

= (-2Ii)(2iI) 
= - 4i2 I 
= 4I 

 
This implies that TT* = T*T. 
 
Example 1.15: Let T: X −→ X be given by T = �−3 1

5 −2� 
 
To show it is unitary we show that TT∗ = T∗T = I where T∗ = T−1 then then we have 

 TT* = �−3 1
5 −2� �−2 −1

−5 −3� 

= �1 0
0 1� 

= I 
Also we have 

 
T*T = �−2 −1

−5 −3� �−3 1
5 −2� 

  = �1 0
0 1� 

  = I 
 
This means that TT* = T*T = I which implies that T is unitary. 
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Definition 1.16:  A bouned operator U is called isometry if ∥Ux∥ = ∥x∥  for all x ∈ 𝐻. Uis called partial isometry 
when restricted to (𝐾𝑒𝑟 𝑈)⊥. 
 
Definition 1.17: An operator T is normaloid if ∥T∥ = sup{| ⟨Tx, x⟩ |: ∥x∥ = 1} 
 
Definition 1.18: An operator T is hyponormal if ∥T∗x∥ ≤ ∥Tx∥ for every x∈ 𝐻. 
 
Definition 1.19: An operator T is quasinormal if T∗T commutes with T. That is, (T∗T)T = T(T∗T) 
 
Definition 1.20: An operator T is posinormal if there exists a positive operator P∈ 𝐵(𝐻)  such that TT* = T*PT. Here 
P is an interrupter of T. The associated interrupter P must satisfy the following condition ∥P∥  ≥ 1  
 
Since ∥T2∥ = ∥TT*∥ = ∥T*PT∥ ≤ ∥T*∥∥P∥∥T∥=∥P∥ ∥T∥2   
 
Definition 1.21: A generalized derivation𝛿𝑃,𝑄 on a C∗-algebra Ω, is said to be norm-attainable if there exists a function 
𝜑 ∈ H∗ such that ∥𝛿𝑃,𝑄𝜑∥ =∥𝛿𝑃,𝑄∥ 
 
Lemma 1.22: Lex X be an inner product space. Then for all x, y ∈ X we have | ⟨x, y⟩ |2 ≤ ⟨x, x⟩⟨y, y⟩. Equality holds if 
and only if x and y are linearly dependent. Thus the Cauchy-Schwarz Inequality can be written as 

⟨x, y⟩ ≤ ∥x∥∥y∥                                                                                                                                      (1) 
 
2. RESULTS AND DISCUSSION 
 
In this section we start by stating some Lemmas (whose proofs are easy to show) that will apply to prove other lemmas. 
 
Lemma 2.1: Let H be an infinite dimensional complex nonseparable Hilbert space and T : H →H. T is norm-attainable 
if it is self adjoint. 
 
Lemma 2.2: Let H be an infinite dimensional complex nonseparable Hilbert space and T : H →H. T is norm-attainable 
if it is normal. 
 
Lemma 2.3: Let H be an infinite dimensional complex nonseparable Hilbert space and T : H →H. T is norm-attainable 
if it is unitary. 
 
Lemma 2.4: Let H be an infinite dimensional complex nonseparable Hilbert space and T : H →H. T is norm-attainable 
if it is an isometry. 
 
Lemma 2.5: Let H be an infinite dimensional complex nonseparable Hilbert space and T :. H →H T is norm-attainable 
if it is a paranormal. 
 
Theorem 2.6 If T ∈ NA(H) then the following are equivalent: 

(i) T is unitary. 
(ii) T is isometry. 
(iii) T is paranormal. 

 
Proof: 
(i)⇒ (ii) 
Suppose T is unitary, then T*T = TT* = I and from T∗T = I we have for each 𝜁 ∈ H, 

  ∥ 𝜁 ∥2 = ⟨𝜁, 𝜁⟩ = ⟨𝐼𝜁, 𝜁⟩ = ⟨𝑇∗𝑇𝜁, 𝜁⟩ = ⟨𝑇𝜁, 𝑇𝜁⟩ = ∥ 𝑇𝜁 ∥2 
 
Getting the positive square on both sides we get ∥ 𝜁 ∥ = ∥ 𝑇𝜁 ∥ implying that T is isometry. Similary for TT* = I we 
have, 

∥ 𝜁 ∥2 = ⟨𝜁, 𝜁⟩ = ⟨𝐼𝜁, 𝜁⟩ = ⟨𝑇∗𝑇𝜁, 𝜁⟩ = ⟨𝑇∗𝜁, 𝑇∗ 𝜁⟩ = ∥𝑇∗ 𝜁 ∥2 
 
Getting the positive square on both sides we get  ∥ 𝜁 ∥ = ∥ 𝑇∗𝜁 ∥  implying that T* is isometry.  
 
(ii)⇒ (iii)  
Suppose T is isometry, then ∥ 𝑇𝜁 ∥ = ∥ 𝜁 ∥ which implies that 

 ∥ 𝑇𝜁 ∥2 = ∥𝜁∥2 = ⟨𝜁, 𝜁⟩ = ⟨I𝜁, 𝜁⟩ = ⟨T*T𝜁, 𝜁⟩ ≤ ∥T*T𝜁∥∥ 𝜁 ∥ ≤ ∥ T*T𝜁 ∥ ≤ ∥ T*T𝜁 ∥ ≤ ∥ T2𝜁 ∥ 
 
which implies that T is paranormal.  
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(iii)⇒ (i)  
Suppose T is paranormal then ∥ 𝑇𝜁 ∥2≥ ∥ 𝑇2 𝜁 ∥≥ ⟨T*T𝜁, 𝜁⟩ 

 
This implies that ∥ 𝑇𝜁 ∥2 =⟨T*T𝜁, 𝜁⟩ ≤ ∥T*T𝜁∥∥ 𝜁 ∥ ≤ ∥T*∥∥T𝜁∥∥ 𝜁 ∥ 
 
This implies ∥ 𝑇𝜁 ∥ ≤ ∥T*∥∥ 𝜁 ∥ which implies that ∥ 𝑇 ∥ ≤ ∥T*∥ 
 
Applying this relation to  𝑇∗ we have ∥ T*∥ ≤ ∥(T*)*∥ ≤ ∥T∥ which implies that ∥  𝑇 ∥ = ∥T*∥ and therefore by left 
multiplication with T and by right multiplication of T we get ∥  𝑇𝑇 ∥  = ∥T*T∥ = ∥ 𝑇 T*∥ = I. Thus unitary. 
 
Lemma 2.7: Let H be an infinite dimensional complex nonseparable Hilbert space and B(H) the algebra of all bounded 
linear operators on H. Let δ: B(H) →B(H) defined by 𝛿𝑃(X) = PX − XP. Then 𝛿𝑃 is norm-attainable if P is norm-
attainable. 
 
Proof: Let P be norm-attainable, we need to show that 𝛿𝑃 is norm-attainable. By supremum norm we have: 

∥ 𝛿𝑃 (X) ∥ = sup{∥PX − XP∥ and ∥PX∥ = ∥P∥ , ∥X∥ = 1} 
 
Since P is norm-attainable, there exists a unit sequence {𝑠}𝑛 such that ∥𝑠𝑛 ∥ = 1,∥P𝑠𝑛∥ →∥P∥. Set P𝑠𝑛  = 𝜆𝑛𝑠𝑛 + 𝜇𝑛𝑡𝑛, 
where ⟨ 𝑠𝑛 , 𝑡𝑛⟩ = 0 and ∥𝑡𝑛∥ = 1. 
 
Set Un𝑠𝑛= 𝑠𝑛 and  Un𝑡𝑛 =  −𝑡𝑛. Then 

    ∥(P Un− Un𝑃)𝑠𝑛∥2  = ∥P Un𝑠𝑛 − Un𝑃𝑠𝑛 ∥2 = ∥P 𝑠𝑛 − Un(𝜆𝑛𝑠𝑛 + 𝜇𝑛𝑡𝑛) ∥2  
                                  = ∥ P 𝑠𝑛 − Un𝜆𝑛𝑠𝑛 − 𝑈𝑛𝜇𝑛𝑡𝑛) ∥2 = ∥P 𝑠𝑛 − 𝜆𝑛𝑠𝑛 + 𝜇𝑛𝑡𝑛) ∥2 
                                  = ∥ 𝜇𝑛𝑠𝑛 + 𝜇𝑛𝑠𝑛 ∥2 = ∥ 2 𝜇𝑛𝑡𝑛 ∥2 = 4∥  𝜇𝑛𝑡𝑛 ∥2  
                                  = 4 ∥P 𝑠𝑛 −  𝜆𝑛𝑠𝑛 ∥2 ≥4 (∥P 𝑠𝑛 ∥2 −  ∥ 𝜆𝑛𝑠𝑛 ∥2) 
                                  ≥4 (∥P ∥2 −  ∥ 𝜆𝑛 ∥2) 

 
Allowing 𝜆𝑛 → 0 as n → ∞ we get, ∥(P Un− Un𝑃)𝑠𝑛∥2  ≥ 4 ∥P ∥2 
 
Taking the square root on both sides we get ∥(P Un𝑠𝑛− Un𝑃)𝑠𝑛∥≥2 ∥P ∥ 
 
which implies that ∥  𝛿𝑃 (𝑋)  ∥ ≥2 ∥P ∥ 
 
Since ∥ 𝛿𝑃 (X) ∥ ≤ 2∥P∥ for any P, sufficiency is proved and this implies that 

∥ 𝛿𝑃 (X) ∥ = 2∥P∥. 
 
Since ⟨Ps, s⟩ = 0, then via results in [[15], Theorem 1] we have 
 
∥ 𝛿𝑃 (X) ∥ = ∥PX − XP∥=2∥P∥ = ∥ 𝛿𝑃 ∥ which means that δP is norm-attainable. 
 
Lemma 2.8: Let H be an infinite dimensional complex nonseparable Hilbert space and B(H) the algebra of all 
bounded linear operators on H. Let δ: B(H) → B(H) defined by 𝛿𝑃 (X) = PX − XP. Then δP is norm-attainable if and 
only if 𝛿𝑃 is normal. 
 
Proof: Suppose that  𝛿𝑃 is norm-attainable, then by Lemma 2.2, 𝛿𝑃 is normal. 
 
Conversely suppose that δP is normal then for any an operator X ∈ H, with ∥X∥ = 1 and by Lemma 2.1, we have 

∥ 𝛿𝑃
∗

 𝛿𝑃 (X) ∥ = ∥δ2 
P 𝛿𝑃 (X) ∥. 

 
Let Y =   𝛿𝑃 (𝑋) 

∥ 𝛿𝑃 ∥   
then Y is an operator such that ∥Y ∥ = 1 and hence 

∥ 𝛿𝑃
∗Y∥ = ∥ 𝛿𝑃

∗  𝛿𝑃 (𝑋) 
∥ 𝛿𝑃 ∥   

∥ = 1
∥ 𝛿𝑃 ∥   

∥  𝛿𝑃
∗𝛿𝑃 (𝑋)∥ = 1

∥ 𝛿𝑃 ∥   
∥δ2 

P (X) ∥ = ∥ 𝛿𝑃 (X) ∥ = ∥ 𝛿𝑃∥ 
But by Lemma 2.1 we have ∥ 𝛿𝑃

∗  Y∥= ∥ 𝛿𝑃∥ this implying that ∥ 𝛿𝑃 (X) ∥ = ∥ 𝛿𝑃∥ this means that is 𝛿𝑃 norm-attainable. 
 
Lemma 2.9: Let H be an infinite dimensional complex nonseparable Hilbert space and B(H) the algebra of all bounded 
linear operators on H. Let δ : B(H) → B(H) defined by δP (X) = PX − XP. Then δP   is norm-attainable if δP is normally 
represented. 
 
Proof: To show that 𝛿𝑃 is normally represented it is equivalent in showing that for 𝛿𝑃 ≠ 0 is norm-attainable if its 
adjoint  𝛿𝑃

∗   is norm-attainable. Let 𝛿𝑃 ∈ E[NA(H)] be norm-attainable, then there exists an operator X ∈ H with ∥X∥ = 1 
such that ∥ δP X∥ = ∥δP ∥.  That is, That is , 𝛿𝑃

∗𝛿𝑃 (X) =  ∥𝛿𝑃 ∥2X 
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Let, Y =   𝛿𝑃 (𝑋) 

∥ 𝛿𝑃 ∥  
 then Y is an operator such that ∥Y ∥ = 1 and hence ∥ 𝛿𝑃

∗Y∥ = ∥𝛿𝑃  ∥. but δP is self adjoint, then 
∥ 𝛿𝑃

∗Y∥ = ∥𝛿𝑃  ∥ =∥ 𝛿𝑃
∗|| 

 
This implies that ∥ 𝛿𝑃

∗Y∥ = ∥𝛿𝑃  ∥ =∥ 𝛿𝑃
∗|| 

 
Thus 𝛿𝑃

∗  is norm-attainable implying that is 𝛿𝑃  normally represented. 
 
Lemma 2.10: Let H be an infinite dimensional complex nonseparable Hilbert space and B(H) the algebra of all 
bounded linear operators on H. Let δ: B(H) → B(H) defined by δP,Q (X) = PX – XQ. Then δP,Q is norm-attainable if 
both P and Q are norm-attainable. 
 
Proof: By Cauchy Schwarz inequality in Lemma 1.22, | ⟨Q𝜁, 𝜁⟩| ≤ ∥𝑄𝜁∥∥𝜁∥. 
 
But if Q𝜁 and 𝜁 are linearly dependent the equality holds, that is | ⟨Q𝜁, 𝜁⟩| = ∥𝜁Q∥∥𝜁∥. 
 
Suppose Q𝜁 𝑎nd 𝜁 are linearly independent, that is, Q𝜁 =  𝜑∥Q∥𝜁, then it is true that | 𝜑 |  = 1 and | 〈𝑃𝜁, 𝜁〉= ∥P∥.  
It follows that | ⟨P𝜂, 𝜂⟩| = ∥P∥, 
 
which implies that P𝜂 = 𝜓 ∥ Q ∥ 𝜂 and ∥ 𝜓 ∥ = 1 and by [[11], Theorem 3.4] we have, 〈 𝑃𝜂

∥𝐴∥
, 𝜂〉= 𝜓 = -〈 𝑄𝜁

∥𝑄∥
, 𝜁〉  

  
Defining X as X : 𝜁 → η we have ∥X∥ = 1 and (PX − XQ)η = 𝜑 (∥P∥ + ∥Q∥)𝜁 
 
which implies that ∥PX- XQ∥ = ∥(PX- XQ) 𝜂∥ = ∥P∥+ ∥Q∥ 
 
By [[15], Theorem 1] we have 

∥δP,Q (X)∥ = ∥(PX − XQ)∥= ∥P∥ + ∥Q∥ = ∥ δP,Q ∥, 
which implies that  δP,Q is norm-attainable. 
 
Lemma 2.11: Let H be an infinite dimensional complex nonseparable Hilbert space and B(H) the algebra of all 
bounded linear operators on H. Let Let δ : B(H) → B(H) defined by δP,Q (X) = PX – XQ. Then δP,Q is norm-attainable 
if is δP,Q  normally represented.  
 
Proof: To show that δP,Q is normally represented it is in enough to show that for 𝛿𝑃𝑄 ≠ 0 is norm-attainable if its 
adjoint 𝛿 *P,Q  is norm-attainable. Let 𝛿𝑃𝑄∈ E[NA(H)] be norm-attainable, then there exists an operator S ∈ NA(H) with 
∥S∥ = 1, ∥ 𝛿𝑃𝑄𝑆∥ = ∥ 𝛿𝑃𝑄∥. 
 
That is, 𝛿𝑃,𝑄

∗
  𝛿𝑃𝑄𝑆 = ∥ 𝛿𝑃𝑄∥S. 

. 
Let T = 𝛿𝑃𝑄𝑆 

∥𝛿𝑃𝑄∥
 , then T is a vector such that ∥T∥ = 1 and hence 

∥ 𝛿𝑃,𝑄
∗ 𝑇∥ = ∥ 𝛿𝑃𝑄∥. 

but 𝛿𝑃𝑄 is self adjoint, then 
∥ 𝛿𝑃,𝑄

∗ 𝑇∥ = ∥ 𝛿𝑃𝑄∥. 
                  = ∥ 𝛿𝑃,𝑄

∗
 ∥. 

This implies that, 
∥ 𝛿𝑃,𝑄

∗ 𝑇∥ = ∥ 𝛿𝑃𝑄∥. 
 
Thus  𝛿𝑃,𝑄

∗
  is norm-attainable implying that 𝛿𝑃𝑄 is normally represented. 
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