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Abstract

Let H be an infinite dimensional complex Hilbert space and B(H)

the algebra of all bounded linear operators on H. We establish norm-

attainability of operators via projective tensor norm. Moreover, we

give results on the convergence of norm-attainable operators.
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1 Introduction

Let H be an infinite dimensional complex Hilbert space and B(H) the algebra

of all bounded linear operators on H. Let both A and B be in B(H) and

T : B(H)→ B(H). T is called an elementary operator if it is representable

in the form:T (X) =
∑n

i=1AiXBi, ∀ X ∈ B(H), where Ai, Bi are fixed in

B(H) or M(B(H)) where M(B(H)) is the multiplier algebra of B(H). For

A, B ∈ B(H) we have the following examples of elementary operators: (i)

the left multiplication operator LA(X) = AX, (ii) the right multiplication

operator RB(X) = XB, (iii) the inner derivation δA = AX − XA, (iv) the

generalized derivation δA,B = AX −XB, (v) the basic elementary operator

MA, B(X) = AXB, (vi) the Jordan elementary operator UA, B(X) = AXB+

BXA, ∀ X ∈ B(H). Stampfli [??] characterized the norm of the generalized

derivation ‖δA,B‖ = infβ∈C{‖A−β‖+‖B−β‖}, where C is the complex plane.

In our main result, we prove some necessary and sufficient conditions for

norm-attainability of operators in B(H). We shall give some basic definitions

first.
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Definition 1.1. An operator A ∈ B(H) is said to be norm-attainable if:

There exists a unit vector x ∈ H such that ‖Ax‖ = ‖A‖; there exists a

unit functional φ ∈ H∗ such that ‖A(φ)‖ = ‖A‖. Moreover, the deriva-

tion δA is norm-attainable if ∃ µ ∈ B(H) ⊗p B(H) such that ‖δAµ‖p =

‖δA‖p, where ‖µ‖p is the projective norm such that ‖µ‖p = 1. An operator

TÃ,B̃(X) =
∑n

i=1AiXBi, is said to be norm-attainable if there exists a con-

traction X in the unit ball, (B(H))1, such that ‖TÃ,B̃(X)‖ = ‖TÃ,B̃‖, where

Ã = (A1, ..., An) and B̃ = (B1, ..., Bn) are n-tuples in B(H). If B̃ = Ã then

we have TÃ,Ã simply denoted by TÃ.

We denote the algebra of all norm-attainable operators by NA(H). See [??-

??] for details on norm-attainable elementary operators and derivations and

the references therein.

2 Preliminaries

Proposition 2.1. Let u ∈ H, u′ ∈ H∗. Define an operator in B(H) by

u⊗ u′ then

(i)tr(u⊗ u′) = 〈u′, u〉, u′ ∈ H∗ and u ∈ H.
(ii) trA is independent of the basis chosen in H, and it is the sum of the

eigenvalues of A with their order of algebraic multiplicity (in the character-

istic polynomial of A), the mapping {B(H)→ C, A 7→ trA} is linear.

Proof. (i) Let u = Σiu
iei, where 〈ei, u〉ui. Since (u⊗ u′)ei = 〈u′, ei〉u, tr(u⊗

u′) = 〈ei, (u⊗ u′)ei〉 = 〈ei, u〉〈u′, ei〉 = 〈u′, 〈ei, u〉ei〉 = 〈u′, u〉.
(ii) Since (i) holds, tr(u⊗u′) is independent of the basis chosen. It is evident

that {A 7→ trA} is linear. The independence of ”tr” relative to the basis

is therefore valid for every element in B(H). The trace of A is by definition

the sum of the diagonal elements of a matrix [A] of A in the basis {ei, i =

1, ..., n}. Therefore, if it is in this basis then it is the sum of eigenvalues by

taking into account their algebraic multiplicity.

Proposition 2.2. Every element A ∈ B(H) admits a unique decomposition

defined by A = TP , where T is a partial isometry, P is a positive operator

and KerT = KerP.
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Proof. If A = TP , then ‖Au‖ = ‖TPu‖, ∀ u ∈ H. Indeed, since T is an

isometry on the range of P, hence if Pu = 0, then Au = 0. Therefore, the

above equalities are valid for all u ∈ H and 〈A∗A, u〉 = 〈Pu2, u〉. It is clear

that A∗A is positive, self-adjoint and diagonalizable. Let {ei, i = 1, ..., n}
be an orthonormal basis of H such that A∗Aei = µ2ei, µ ≥ 0. If P is

given by Pei = µei, then P 2 = A∗A. Hence P exists. Then T is defined by

R(P ) → H, Pu 7→ Au; KerP → H, v 7→ 0. This is a partial isometry.

Uniqueness is clear from the fact that if G ∈ B(H) is positive then there

exists a positive operator P such that G = P 2, P is called the square root of

G.

3 Main Results

Theorem 3.1. Let S ∈ B(H), β ∈ W0(A) and α > 0. There exists an

operator Z ∈ B(H) such that ‖S‖ = ‖Z‖, with ‖S − Z‖ < α. Furthermore,

there exists a vector η ∈ H, ‖η‖ = 1 such that ‖Zη‖ = ‖Z‖ with 〈Zη, η〉 = β.

Proof. For proof see ??.

Corollary 3.2. Let S, T ∈ B(H) If both S and T are norm-attainable then

the basic elementary operator MS,T and the Jordan elementary operator US, T
are also norm-attainable.

Proof. The proofs are analogous to that of the main theorem ?? with con-

siderations to Propositions ?? and ??.

In the next section we give results on convergence of norm-attainable oper-

ators.

4 Convergence of norm-attainable operators

Throughout this section, all the operators are norm-attainable unless other-

wise stated. We consider uniform, weak and strong convergence in NA(H).

Definition 4.1. A sequence {Tn} of operators in NA(H) converges uni-

formly, or strongly, or weakly to an operator T ∈ NA(H) if ‖Tn − T‖ → 0,
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or ‖(Tn − T )x‖ → 0 for every x ∈ H , or 〈Tnx, y〉 → 0 for every x, y ∈ H
(equivalently, 〈Tnx, x〉 → 0 for every x in the complex Hilbert space H), and

these will be denoted by Tn →u T , or Tn →s T , or Tn →w T , respectively.

It is bounded if supn ‖Tn‖ < ∞. Clearly,Tn →u T ⇒ Tn →s T ⇒ Tn →w T .

This implies that supn ‖Tn‖ <∞.

Theorem 4.2. Let {Tn} and {Sn} be sequences of operators in NA(H) and

NA(K) respectively. Let also T ∈ NA(H) and S ∈ NA(K).

(a) If Tn →u T and Sn →u S, then Tn⊗̂Sn →u T ⊗̂S.

(b) If Tn →s T and Sn →s S, then Tn⊗̂Sn →s T ⊗̂S.

(c) If Tn →w T and Sn →w S, then Tn⊗̂Sn →w T ⊗̂S.

Proof. Recall that Tn⊗ Sn− T ⊗ S = Tn⊗ (Sn− S) + (Tn− T )⊗ S for each

n , which still holds if ⊗ is replaced with ⊗̂.

(a) If ‖Tn − T‖ → 0 (so that {Tn} is bounded) and ‖Sn − S‖ → 0, then

‖Tn⊗̂Sn−T ⊗̂S‖ ≤ supn ‖Tn‖‖Sn−S‖+ ‖S‖‖Tn−T‖, and hence then

‖Tn⊗̂Sn − T ⊗̂S‖ → 0. That is Tn⊗̂Sn →u T ⊗̂S.

(b) Take an arbitrary Σn
i=1xi ⊗ yi in H ⊗K and observe that

‖Tn ⊗ Sn − T ⊗ SΣn
i=1xi ⊗ yi‖ ≤ supn ‖Tn‖Σn

i=1‖xi‖Σn
i=1‖(Sn − S)yi‖

+‖S‖Σn
i=1‖yi‖Σn

i=1‖(Tn − T )xi‖.
If If Tn →s T and Sn →s S, then ‖(Tn ⊗ Sn − T ⊗ S)Σn

i=1xi ⊗ yi‖ → 0

and so Tn ⊗ Sn →s T ⊗ S. Moreover, {Tn⊗̂Sn} is bounded (because

supn ‖Tn⊗̂Sn ≤ supn ‖Tn‖ supn ‖Sn‖ < ∞). As it is well-known, if a

sequence of operators converges strongly in a normed space, and if its

extension is bounded in the completion, then convergence holds in the

completion of the space. Thus Tn⊗̂Sn →s T ⊗̂S.

(c) Similarly, and applying the Schwarz inequality, |〈Tn⊗Sn−T⊗SΣn
i=1xi⊗

yi,Σ
n
i=1xi⊗yi〉| ≤ supn ‖Tn‖Σn

i=1Σ
n
j=1‖xi‖‖xj‖Σn

i=1Σ
n
j=1|〈(Sn−S)yi, yj〉|

+‖S‖Σn
i=1Σ

n
j=1‖yi‖‖yj‖Σn

i=1Σ
n
j=1|〈(Tn − T )xi, xj〉|.

Thus |〈Tn⊗Sn−T⊗SΣn
i=1xi⊗yi,Σn

i=1xi⊗yi〉| → 0, whenever Tn →w T

and Sn →w S, and so Tn ⊗ Sn →w T ⊗̂S. The same argument applies

for weak convergence so that Tn⊗̂Sn →w T ⊗̂S.
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Remark 4.3. The result of part (c) in Theorem ?? does not mirror the or-

dinary product counterpart. Indeed, Tn →w T and Sn →w S do not im-

ply TnSn →w TS. In fact, even Tn →s T and Sn →w S do not imply

TnSn →w TS. We give the following example. If V is a unilateral shift,

then if we put T ∗n = Sn = V n so that Tn →s 0, Sn →w 0, we have TnSn = I

for every n.

Theorem 4.4. Let {Tn} and {Sn} be sequences of operators in NA(H) and

NA(K) respectively. If one of them converges to zero uniformly ( strongly,

weakly ) and the other is bounded, then {Tn⊗̂Sn} converges to zero uniformly

( strongly, weakly ).

Proof. If ‖Tn‖ → 0 and supn ‖Sn‖ < ∞ or vice versa, then ‖Tn⊗̂Sn‖ → 0

because ‖Tn⊗̂Sn‖ = ‖Tn⊗Sn‖ = ‖Tn‖‖Sn‖ for every n ≥ 1, which proves the

claimed result for uniform convergence. For strong and weak convergences

take an arbitrary vector Σn
i=1xi ⊗ yi in H ⊗K. Note that

‖(Tn ⊗ Sn)Σn
i=1xi ⊗ yi‖ ≤ sup

n
‖Sn‖Σn

i=1‖Tnxi‖Σn
i=1‖yi‖.

If {Tn} converges strongly to zero and if {Sn} is bounded (or vice versa),

then ‖(Tn ⊗ Sn)Σn
i=1xi ⊗ yi‖ → 0. Applying the same argument in the proof

of (b) of Theorem ?? above we get Tn⊗̂Sn →s 0. Similarly,

|〈(Tn⊗Sn)Σn
i=1xi⊗yi,Σn

i=1xi⊗yi〉| ≤ supn ‖Sn‖Σn
i=1Σ

n
j=1|〈Tnxi, xj〉|Σn

i=1Σ
n
j=1‖yi‖‖yj‖

If {Tn} converges weakly to zero and if {Sn} is bounded (or vice versa), then

〈(Tn ⊗ Sn)Σn
i=1xi ⊗ yi,Σn

i=1xi ⊗ yi〉 → 0. Again, applying the same argument

in the proof of (c) of Theorem ??, it follows that Tn⊗̂Sn converges weakly to

zero.

At this point we give some results on convergence of power sequences of

Hilbert space operators.We shows that, unlike the above example, conver-

gence to zero of power sequences (or, equivalently, of sequences having the

semigroup property) is transferred from the tensor product to one of the

factors. First we consider the following auxiliary result.

Proposition 4.5. If the power sequence {T n⊗̂Sn} is bounded, then so is one

of the power sequences {T n} or {Sn} .
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Remark 4.6. Let T ∈ NA(H) and let S ∈ NA(K) . Consider the power se-

quences {T n} and {Sn}. If {T n⊗̂Sn} converges to zero uniformly or strongly,

then so does one of the sequences {T n} or {Sn}. If {T n⊗̂Sn} converges to

zero weakly, and one of T or S is power incremented, then one of the se-

quences {T n} or {Sn} converges to zero strongly or uniformly.

References

[1] N. B. Okelo, J .O. Agure and D. O. Ambogo, Norms of elementary op-

erators and characterization of norm - attainable operators, Int. Journal

of Math. Analysis, 24 (2010), 687-693.

[2] N. B. Okelo, M. O. Okongo and S. A. Nyakiti, On Projective Tensor

Norm and Norm-Attainable ?-Derivations, Int. J. Contemp. Math. Sci-

ences, Vol. 5, no. 40 (2010), 1969 - 1975.

[3] N. B. Okelo, D. O. Ambogo and S. A. Nyakiti, On the Constants C(Ω)

and Cs(Ω) of a C∗-algebra and Norms of Derivations, International

Mathematical Forum, Vol. 5, no. 53 (2010), 2647 - 2653.

[4] N. B. Okelo and J. O. Agure, A two-sided multiplication operator norm,

Gen. Math. Notes, Vol. 2, No. 1, (2011), 18-23.

[5] N. B. Okelo, J. O. Agure and P. O. Oleche, Various Notions Of Or-

thogonality in Normed Spaces, Acta Mathematica Scientia, Vol.33 No.

5 (2013), 1387-1397 .

[6] O. T. Mewomo and N. B. Okelo, On Approximate Character Amenabil-

ity of Banach Algebras, Journal of the Nigerian Mathematical Society,

Vol. 32, (2013), 303-315.

[7] N. B. Okelo, The norm-attainability of some elementary operators, Ap-

plied Mathematics E-Notes, Vol.13 (2013), 1-7.

[8] N. B. Okelo, J. O. Agure and P. O. Oleche, Certain conditions for

norm-attainability of elementary operators and derivations, Interna-

© JGRMA 2014, All Rights Reserved                                                                                                                                      15

N B Okelo et al., Journal of Global Research in Mathematical Archives, 2(5), May 2014, 10-17



tional Journal of Mathematics and Soft Computing, Vol.3, No.1 (2013),

53 - 59.

[9] N. B. Okelo, J. O. Agure and P. O. Oleche, On norm-attainability of ele-

mentary operators, International Journal of Science Research and Tech-

nology, Vol.1, No.1 (2013), 6-10.

[10] N. B. Okelo, On Dvoretsky’s theorem and Norms of elementary oper-

ators, Int. Journal of pure and applied Sciences and technology, Vol 2.

N0. 2 (2011), 46-53.

[11] A. Seddik, On the numerical range and norm of elementary operators,

Linear Multilinear Algebra 52 (2004), 293-302.

[12] J. G Stampfli, The norm of a derivation, Pacific journal of mathematics,

Vol. 33, 3 (1970), 737-747.

© JGRMA 2014, All Rights Reserved                                                                                                                                      17

N B Okelo et al., Journal of Global Research in Mathematical Archives, 2(5), May 2014, 10-17


