

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF AGRICULTURAL AND FOOD SCIENCES

FOURTH YEAR SECOND SEMESTER UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN AGRICULTURAL EXTENSION EDUCATION

2019/2020 ACADEMIC YEAR SPECIAL/RESIT

COURSE CODE: AHT 3224 COURSE TITLE: Principles of Plant Breeding

EXAM VENUE: Education STREAM: BSc. Agricultural Extension

DATE:

EXAM SESSION:

TIME: 2 HOURS

Instructions:

- 1. Answer ALL questions in section A and ANY other 2 Questions in section B.
- 2. Candidates are advised not to write on question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION A [30 MARKS]

Answer ALL questions from this Sectio

1.	What is the general philosophy underlying any breeding programme?	[2 MARKS]
2.	Distinguish between private sector plant breeder and public sector plant breeder	[2 MARKS]
3.	Distinguish between self-fertilization vs cross-fertilization? MARKS]	[2
4.	Explain asexual reproduction MARKS]	[2
5.	Distinguish between pure-line cultivars vs open-pollinated cultivars MARKS]	[2
6.	Describe the TWO stages of hybrid cultivar development MARKS]	[5
7.	EXPLAIN the two ways hybrid varieties helped seed companies to have an in-b protection MARKS]	ouilt economic [5
(a)	Describe FIVE steps that must be taken in disease resistance breeding sche MARKS]	eme [10

SECTION B (40 MARKS)

Answer ANY TWO questions in this section

8a. Outline the steps in pedigree method of plant breeding [10

MARKS]

8b. Describe the following post-breeding scheme processes before release of a variety

[10 MARKS]

- (a) Breeders seed:
- (b) Foundation seed:
- (c) Certified seed:

9a. As a plant breeder, you were given four inbred parents (A, B, C, and D) of maize. EXPLAIN FIVE types of hybrids you could produce for each of the following: [10]

MARKS]

- (a) Single-cross hybrids:
- (b) Three way-cross hybrids:
- (c) Double-cross hybrids:

9b. Give one example of a crop propagated through each of the following methods [5

MARKS]

- (a) Budding and grafting:
- (b) Leafy cuttings:
- (c) Leafless stem cuttings:
- (d) Lateral shoots:
- (e) Tubers:
- 10. A barley breeder crossed two parents tall, six-row (*TTSS*) and short, two-row (ttss). The F1 hybrid he obtained had the genotype *TtSs*. He selfed the F1 (i.e. *TtSs* x *TtSs*). [20 MARKS]
 - (a) What are the gametes produced by the F1?

- (b) Draw a Punnet Square Table to determine all the possible outcomes from the cross *TtSs* x *TtSs*
- (c) How many possible genotypic outcomes are there?
- (d) What are the genotypic frequencies of each of the comes?
- (e) Describe the GENOTYPES of each of the possible outcomes. Remember Tall (*T*) is dominant over short (*t*), and Six-row (*S*) is dominant over Two-row (*s*).
- (f) If the alleles do not show dominance, what are the possible phenotypes?
- (g) Does a conventional breeder rely on phenotypes or genotypes during selection? What about a molecular breeder?
- (h) Assuming you are the breeder; and you are tasked with developing genotypes with resistance to lodging. Would you select for tall or short plants? Explain your answer