

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL SPECIAL RESIT 2020/2021 ACADEMIC YEAR

RESIT (MAIN)

COURSE CODE: SMA 304

COURSE TITLE: Group Theory

EXAM VENUE:

DATE:

STREAM: (EDUCATION)

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

a)	Define the following terms as used in Group Theory				
	i) A group.	(4 marks)			
	ii) A homomorphism from a group $(G,*)$ to another group (H, †). (2 marks)			
	iii) A subgroup of a group $(G,*)$. ((2 marks)			
b)	Determine whether the set $(\mathbb{R}, +)$ is a group or not.	(5 marks)			
c)	Let $(G,*)$ be a group. Then prove that for each element $x \in G$, the identity e in $(G,*)$				
	is unique. (4 marks)				
d)	Let $(G,*)$ be a group. If $a, b, c \in G$ with $a * b = c * b$, then show that $a = c$.				
		(4 marks)			
e)	Explain why the following subset of \mathbb{Z} is not a subgroup of $(\mathbb{Z}, +)$:				
	i) The set $\{-2, -1, 0, 1, 2\}$.	(1 marks)			
	ii) The set $\{n \in \mathbb{Z}: n \ge 0\}$ of all non-negative integers.	(2 marks)			
f)	If <i>n</i> is a positive integer, then show that the set $n\mathbb{Z} := \{nk: k \in \mathbb{Z}\}$ of all multiples of				
	n is a subgroup of (\mathbb{Z} , +).	(4 marks)			
g)	Determine the order of the following				
	i) (ℤ₄, +).	(1 mark)			
	ii) (ℤ, +).	(1 mark)			

QUESTION TWO (20 marks)

a)	Fill in the missing parts of the Cayley table of a group given below.	(4 marks)
----	---	-----------

*	a	b	c
a		a	
b			
c	b		

- b) Determine the identity element of the group in a) above. (1 mark)
- c) Determine the inverse of each element in the group in a) above. (4 marks)
- d) Let $f: G \to H$ be a homomorphism from a group (G, *) and (H, \dagger) . Define
 - i) The image of f. (2 marks)
 - ii) The kernel of f. (2 marks)
- e) Use the subgroup test to prove that the Im(f) is a subgroup of (H, \dagger) . (7 marks)

QUESTION THREE (20 marks)

a) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix}$ be permutations. i) Compute $\alpha \circ \beta$ giving your answer both in matrix and cycle notation.					
(7 marks)					
ii) Determine α^{-1} giving your answer both in matrix and cycle notation.					
(3 marks)					
iii) Draw the graphs for α and β . (6 marks)					
b) Write the following permutation (1,2,3)(4,6,8) in matrix notation. (2 marks)					
c) State the First Isomorphism Theorem. (2 marks)					

QUESTION FOUR (20 marks)

a) De	efine th	(2 marks)				
b) Consider the cyclic group $(\mathbb{Z}_4, +)$.						
i)	Draw	the Cayley table of the cyclic group, $(\mathbb{Z}_4, +)$.	(5 marks)			
ii)	Deter	rmine the identity element of the group.	(1 mark)			
iii)	Deter	rmine the inverse of each element of the group.	(4 marks)			
iv)	Determine the subgroups of the cyclic group, $(\mathbb{Z}_4, +)$. (4 marks)					
v)	Determine, in the cyclic group (\mathbb{Z}_4 , +), the order of the following elements					
	I)	2.	(2 marks)			
	II)	3.	(2 marks)			

QUESTION FIVE (20 marks)

- a) Let (G,*), (H, ⊙) and (M, †) be groups, f: G → H and g: H → M be homomorphisms.
 i) Then prove that f ∘ g: G → M is also a homomorphism. (5 marks)
 ii) If f is an isomorphism, show that f⁻¹: H → G is also an isomorphism. (5 marks)
 iii) If f and g are isomorphisms, show that f ∘ g: G → M is also an isomorphism. (5 marks)
- b) Let (G,*) be a group and H a subgroup. Then show that H is normal if and only if for each $x \in G$, the left coset is equal to the right coset. (5 marks)