

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS SPECIAL RESIT 2020/2021 ACADEMIC YEAR

SCHOOL OF MATHEMATICS, ACTUARIAL SCIENCES BPS

SEMESTER TWO, SECOND YEAR EXAMINATIONS for BSc/BEd

SUPPLEMETARY/SPECIAL

SMA414 Fourier Analysis

Nov, 2020 Time: 2hrs

INSTRUCTIONS

Answer Question1 and two other questions

Show all the necessary working

QUESTION 1 (30 MARKS)

a) Find the
$$\lim_{x\to 0} \left\{ \frac{\cos(x^2) - 1 + x^2}{x} \right\}$$
 (5 marks)

b) Determine whether the given functions are even, odd or neither

i)
$$f(x) = \sin\left(\frac{n\pi x}{L}\right)$$
 on $-L \le x \le L$
ii) $f(x) = \cos\left(\frac{2n\pi x}{L}\right)$ on $-L \le x \le L$

ii)
$$f(x) = \cos\left(\frac{2n\pi x}{L}\right)$$
 on $-L \le x \le L$

iii)
$$f(x) = x^2 - 11 + e^{-2x}$$
 on $-L \le x \le L$ (9 marks)

c) Compute the Maclaurin series as far as x^6 term for the following functions

i)
$$\frac{\sin(x)}{x}$$

ii) $\frac{\sin(x^2)}{x^2}$ (8 marks)

d) The Fourier series of the function f defined by $f(x) = x^2$ on the interval $[-\pi, \pi]$ is known to be convergent.

What do you understand by

- period of fi)
- f is periodic ii)
- iii) periodic extension of f
- Fourier coefficients of expansion iv)

Give a sketch graph of two periodic extensions of f(8 marks)

QUESTION 2 (20 MARKS)

Solve the heat equation $u_t = \frac{1}{100}u_{xx}$, 0 < x < 1, t > 0 with the Dirichlet boundary conditions u(t,0) = u(t,1) = 0, t > 0 and initial conditions u(0,x) = g(x) = x, $0 \le x \le 1$ (20 marks)

QUESTION 3 (20 MARKS)

Find the Fourier series of the function defined in pieces (piecewise constant function) by

$$f(x) = \begin{cases} 8 & 0 < x < 4 \\ -8 & 4 < x < 8 \end{cases}$$

where f is periodic with period 4. What does the series converge to at

- i) x=2
- ii) x = 5

(20 marks)

QUESTION.4 [20 marks]

- (a) Given the voltage v = f(t) volts, and i = F(t) amperes, such that $v = 12.0 + 5.2\cos wt + 2.4\cos 2wt + 0.9\cos 3wt + ... + 2.7\sin wt + 1.8\sin 2wt + 0.2\sin 3wt + ... + 1.8\sin 2wt + 1.2\sin 2wt + 1.$
- (b) For the function $f(x) = \begin{cases} 12x & -5 < x < 5 \\ f(x+10) & otherwise \end{cases}$
- (i) sketch graph of f(x) over the interval -20 < x < 20
- (ii) state period of f(x)
- (iii) obtain Fourier series for f(x)

[11 marks]

QUESTION 5 [20 marks]

One cycle of a periodic waveform y = f(x) of period 2π is defined by the below data.

x^0	0	30	60	90	120	150	180	210	240	270	300	330
y(x)	15	20	23	20	14	8	3	4	9	12	10	11

Determine the approximate Fourier series for y = f(x) up to and including the third harmonic. [20 marks]