JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 UNIVERSITY EXAMINATIONS SPECIAL RESIT 2020/2021 ACADEMIC YEAR

SCHOOL OF MATHEMATICS, ACTUARIAL SCIENCES BPS

SEMESTER TWO, SECOND YEAR EXAMINATIONS for BSc/BEd SUPPLEMETARY/SPECIAL

SMA414 Fourier Analysis

Nov, 2020
Time: 2hrs

INSTRUCTIONS

Answer Question1 and two other questions

Show all the necessary working

QUESTION 1 (30 MARKS)

a) Find the $\lim _{x \rightarrow 0}\left\{\frac{\cos \left(x^{2}\right)-1+x^{2}}{x}\right\}$
b) Determine whether the given functions are even, odd or neither
i) $\quad f(x)=\sin \left(\frac{n \pi x}{L}\right) \quad$ on $\quad-L \leq x \leq L$
ii) $\quad f(x)=\cos \left(\frac{2 n \pi x}{L}\right) \quad$ on $\quad-L \leq x \leq L$
iii) $\quad f(x)=x^{2}-11+e^{-2 x} \quad$ on $\quad-L \leq x \leq L \quad$ (9 marks)
c) Compute the Maclaurin series as far as x^{6} term for the following functions
i) $\quad \frac{\sin (x)}{x}$
ii) $\frac{\sin \left(x^{2}\right)}{x^{2}}$
d) The Fourier series of the function f defined by $f(x)=x^{2}$ on the interval $[-\pi, \pi]$ is known to be convergent.

What do you understand by
i) period of f
ii) $\quad f$ is periodic
iii) periodic extension of f
iv) Fourier coefficients of expansion

Give a sketch graph of two periodic extensions of f

QUESTION 2 (20 MARKS)

Solve the heat equation $u_{t}=\frac{1}{100} u_{x x}, 0<x<1, t>0$ with the Dirichlet boundary conditions $u(t, 0)=u(t, 1)=0, t>0$ and initial conditions $u(0, x)=g(x)=x, 0 \leq x \leq 1$ (20 marks)

QUESTION 3 (20 MARKS)

Find the Fourier series of the function defined in pieces (piecewise constant function) by

$$
f(x)=\left\{\begin{array}{cc}
8 & 0<x<4 \\
-8 & 4<x<8
\end{array}\right.
$$

where f is periodic with period 4 . What does the series converge to at
i) $\quad x=2$
ii) $\quad x=5$
(20 marks)

QUESTION. 4 [20 marks]

(a) Given the voltage $v=f(t)$ volts, and $i=F(t)$ amperes, such that $v=12.0+5.2 \cos w t+2.4 \cos 2 w t+0.9 \cos 3 w t+\ldots+2.7 \sin w t+1.8 \sin 2 w t+0.2 \sin 3 w t+\ldots$ $i=8.50+4.1 \cos w t+2.0 \cos 2 w t+0.6 \cos 3 w t+\ldots+3.6 \sin w t+1.2 \sin 2 w t+0.3 \sin 3 w t+\ldots$ find the average value of power $v i$ in watts, over one cycle.
[9 marks]
(b) For the function $f(x)= \begin{cases}12 x & -5<x<5 \\ f(x+10) & \text { otherwise }\end{cases}$
(i) sketch graph of $f(x)$ over the interval $-20<x<20$
(ii) state period of $f(x)$
(iii) obtain Fourier series for $f(x)$

QUESTION 5 [20 marks]

One cycle of a periodic waveform $y=f(x)$ of period 2π is defined by the below data.

x^{0}	0	30	60	90	120	150	180	210	240	270	300	330
$y(x)$	15	20	23	20	14	8	3	4	9	12	10	11

Determine the approximate Fourier series for $y=f(x)$ up to and including the third harmonic. [20 marks]

