

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION AND ACTUARIAL SCIENCE

SPECIAL RESIT 2020/2021 ACADEMIC YEAR MAIN CAMPUS

COURSE CODE: SMA 3111

COURSE TITLE: Mathematics I

EXAM VENUE: STREAM: HEALTHSCI, AGRI, ENGINEERING

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

- a) Define the following terms as used in set theory and give example in each case.
 - i) Cardinality of a set (2marks)
 - ii) Universal set (2marks)
- b) Solve the equation $x^2 6x + 2 = 0$ by completing the square (4marks)
- c) i) How many committees of 5 people can be formed from a pool of 12 people (2marks)
 - ii) Use Binomial theory to determine the expansion of $(2a 3b)^5$ (5marks)
- d) Prove the identity

$$\frac{\cos \theta}{1 - \sin \theta} - \frac{1}{\cos \theta} = \tan \theta \tag{5 marks}$$

- e) Solve the equation $\log(x^2 3) \log x = \log 2$ (3marks)
- f) A geometric sequence has the first term as 3 and common ratio ss 2, the sequence has eight terms. Find:
 - i) The last term (2marks)
 - ii) The sum of the terms in the sequence (2marks)
- g) Solve $sin\theta = \frac{1}{2}$ for $0 < \theta < 2\pi$ (3marks)

QUESTION TWO (20 marks)

a) The following table shows the distribution of marks in percentages scored by a class of forty students in a promotion examination.

Marks	20-29	30-39	40-49	50-59	60-69	70-79	80-89
Runners	6	5	7	10	5	4	3

Use the data to compute

i) mean (3marks)

ii) median (4marks)

iii) standard deviation from the above data (3marks)

b) Given $A = \{u, v, w, x\}$ and $B = \{a, b, c\}$. Let R be the following relation from A to B. $R = \{(u, b), (u, c), (w, b), (x, a), (x, c)\}$

i) Determine the arrow diagram of R (2marks)

ii) Find the inverse relation R^{-1} of R (2marks)

iii) Determine the domain and the range of R^{-1} (2marks)

c) Given that $A = \{a, b\}$ and $B = \{x, y, z\}$ Show that the $A \times B \neq B \times A$ (4 marks)

QUESTION THREE (20 marks)

- a) i) Three numbers are in arithmetic progression. Their sum is 15 and their product is 80. Determine the 3 numbers (6marks)
 - ii) An oil company bores a hole 80 metres deep. Estimate the cost of boring if the cost is \$ 30 for the first metre with an increase in cost of \$ 2 per metre for each succeeding metre. (4marks)
- b) During the first semester in the Department of Mathematics, JOOUST University, 18 students took SMA 101, 25 took SMA102, 23 took SMA 103 and 9 took SMA 101 and SMA 102, 10 took SMA102 and SMA 103 and 6 took SMA 101 and SMA 103. If there were 50 students and 5 students did not take any of the three courses, with the aid of the Venn diagram find how many students took
 - i) All 3 courses
 - ii) Only SMA102
 - iii) SMA 103 but not SMA 102
 - iv) SMA 101 and SMA 103 but not SMA 102.

(10marks)

QUESTION FOUR (20 marks)

a) Find the power set of $A = \{a, \{1,2\}\}\$ (2marks)

If U is the universal set of all positive integers and P, Q, R are subsets such that

 $P = \{x: x \text{ is a prime number}\}\$

 $Q = \{x: x \text{ is an even number}\}$ $R = \{x: 7 < x \le 20\}$

List the elements of:

i) $P \cap R$ (1mark)

ii) $Q^c \cap R$ (2marks)

iii) $P^c \cap (Q^c \cap R)$ (2marks)

b) Draw the Venn diagram and shade the region corresponding to $(A^c \cap B) \cap C^c$ (3marks)

- c) Solve the equation $2\sin^2\theta = \cos\theta + 1$ for θ in the range $0^\circ \le \theta \le 360^\circ$ (5marks)
- d) Use the remainder theorem to evaluate $f(x) = 6x^3 5x^2 4x 17$ at x = 3 (5 marks)

$\underline{QUESTION\;FIVE}\;(20\;marks)$

- a) Show that the area *A* of an isosceles triangle whose equal sides are of length *s* and θ is the angle between them is $A = \frac{1}{2} s^2 \sin \theta$ (5 marks)
- b) Let f and g be the functions from the set of integers to the set of integers defined by $f(x) = 2x^2 3$ and g(x) = 4x. Find

$$i)(fog)(x)$$
 (3marks)

$$ii)(gof)(x)$$
 (3marks)

- c) Find the inverse of f(x) = 2x 3 (3marks)
- a) Prove the following distributive law of set operations:

$$F \cap (G \cup H) = (F \cap G) \cup (F \cap H)$$
 (6 marks)