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QUESTION ONE (COMPULSORY) (30 marks) 

a) If   2 3 6f x x x    , find 
(2 a) f(2)f

a

 
.                                                                 (4 marks) 

b) Explain the meaning of:  lim ( )
x a

f x L


 .                                                                       (2 marks) 

c) Find the limit (if it exists)  

                              
2

1

1
lim

1x

x

x




                                                                                                     (4 marks)                                                                                                       

d) Determine the point of discontinuity (if any) of the function ( )f x  
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 
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If the discontinuity is removable, define the function to make it continuous.                (4 marks) 

e) Find  23 5
d

x
dx

 from first principles.                                                                           (4 marks) 

f) If f  and g are both differentiable, show that  ( ) ( ) ( ) ( )
d d d

f x g x f x g x
dx dx dx

   . 

                                                                                                                                        (4 marks) 

 

g) Find 
dx

dy
 when 1x  , given 4

3

5
3 8ln5

2

x

x
y e x

e
   . Give the answer correct to 3 significant 

figures.                                                                                                                            (4 marks) 

h) 50sin 40v t volts represent an alternating voltage where t is the time in seconds. At a time 
320 10 seconds, find the rate of change of voltage.                                                     (4 marks)                                                              

 

QUESTION TWO (20 marks) 

a) If  2 3

2 2
2ln 2 2 cos5 3sin 2y

e 
  


      

(i) 
dy

d
 

(ii) Evaluate 
dy

d
 when 

2


  ,  correct to 4 significant figures.                             (6 marks) 

b) Prove that if u and v  are differentiable, then so is their product uv , and  
d dv du

uv u v
dx dx dx

  .       

(5 marks) 

c) Evaluate 
  
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x

x x



 
. Give geometrical interpretation of your solution.       (5 marks) 

d) For what values of a and b is 
2

2 , 0

( ) 3 , 0 2

3x 5, 2

ax b x

f x x a b x

x
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
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  

 

Continuous at every x ?                                                                                                  (5 marks)                                                                                                        

 

 

 

 



 

QUESTION THREE (20 marks) 

a) Find )(xfDx given  3( ) 2 xf x x x e  .                                                                        (5 marks) 

b) Using logarithmic differentiation, determine 
dx

dy
 given 

2

4
2
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1

x
y

x





.    

                                                                                                                                        (6 marks)     

c) Find y if y xx y .                                                                                                          (5 marks)   

d) Find the derivative of y with respect to   given 
1 sin

cos
y



 





.                                   (4 marks)                                  

 

 

QUESTION FOUR (20 marks) 
a) Use implicit differentiation to find an equation of the tangent to the curve at the point give: 

 2 2 3, 1,1x xy y   .                                                                                                (6 marks) 

b) Find 
dy

dx
, given  sin tan 2y x .                                                                                    (5 marks) 

c) If ,)2(2  ttx  ,)3(3  tty  find 
dx

dy
 in terms of .t                                                 (4 marks) 

d) Show that the differential equation 044
2

2

 y
dx

dy

dx

yd
is satisfied when xxey 2 .   (5 marks) 

 

QUESTION FIVE (20 marks) ` 

a) The parametric equations for a hyperbola are sec2x , tan4y . Evaluate 
2

2
,

d y

dx
 correct to 

4 significant figures, when 1 radian.                                                                                      (6 marks) 

b) The displacement s cm of the end of a stiff string at time t  seconds is given by: .2sin ftaes kt   

Determine the velocity and acceleration of the end of the spring after 2 seconds if ,3a  75.0k  and 

.20f                                                                                                                                         (5 marks) 

c) Determine the equation of the normal for the curve xxy 32 2   at the point (1,2) .               (4 marks) 

d) The heat capacity c of a gas varies with absolute temperature as shown: 

.1020.11020.750.26 263   c  
Determine the maximum value of c and the temperature at which it occurs.                              (5 marks) 

 

 

 

 

 


