JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL

SPECIAL RESIT 2 2020/2021 ACADEMIC YEAR

MAIN REGULAR

COURSE CODE: SMA 102

COURSE TITLE: Calculus I
EXAM VENUE:
STREAM: (BSc. Actuarial)

DATE: EXAM SESSION:
TIME: 2.00 HOURS
Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) (30 marks)

a) If $f(x)=-x^{2}+3 x+6$, find $\frac{f(2+\mathrm{a})-\mathrm{f}(2)}{a}$.
(4 marks)
b) Explain the meaning of: $\quad \lim _{x \rightarrow a} f(x)=L$.
c) Find the limit (if it exists)

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{\sqrt{x}-1} \tag{4marks}
\end{equation*}
$$

d) Determine the point of discontinuity (if any) of the function $f(x)$

$$
f(x)=\frac{2 x^{2}-3 x-2}{x-2}
$$

If the discontinuity is removable, define the function to make it continuous.
(4 marks)
e) Find $\frac{d}{d x}\left(3 x^{2}+5\right)$ from first principles.
(4 marks)
f) If f and g are both differentiable, show that $\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)$.
(4 marks)
g) Find $\frac{d y}{d x}$ when $x=1$, given $y=3 e^{4 x}-\frac{5}{2 e^{3 x}}+8 \ln 5 x$. Give the answer correct to 3 significant figures.
h) $v=50 \sin 40 t$ volts represent an alternating voltage where t is the time in seconds. At a time 20×10^{-3} seconds, find the rate of change of voltage.

QUESTION TWO (20 marks)

a) If $y=\frac{2}{\theta^{2}}+2 \ln 2 \theta-2(\cos 5 \theta+3 \sin 2 \theta)-\frac{2}{e^{3 \theta}}$
(i) $\frac{d y}{d \theta}$
(ii) Evaluate $\frac{d y}{d \theta}$ when $\theta=\frac{\pi}{2}$, correct to 4 significant figures.
b) Prove that if u and v are differentiable, then so is their product $u v$, and $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$. (5 marks)
c) Evaluate $\lim _{x \rightarrow \infty} \frac{4 x^{4}+5}{\left(x^{2}-2\right)\left(2 x^{2}-1\right)}$. Give geometrical interpretation of your solution. (5 marks)
d) For what values of a and b is $f(x)=\left\{\begin{array}{cc}a x+2 b, & x \leq 0 \\ x^{2}+3 a-b, & 0<x \leq 2 \\ 3 x-5, & x>2\end{array}\right.$

Continuous at every x ?

QUESTION THREE (20 marks)

a) Find $D_{x} f(x)$ given $f(x)=\left(x^{3}+2 x\right) e^{x}$.
b) Using logarithmic differentiation, determine $\frac{d y}{d x}$ given $y=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}$.
c) Find y^{\prime} if $x^{y}=y^{x}$.
d) Find the derivative of y with respect to θ given $y=\frac{1+\sin \theta}{\theta+\cos \theta}$.

QUESTION FOUR (20 marks)

a) Use implicit differentiation to find an equation of the tangent to the curve at the point give:

$$
\begin{equation*}
x^{2}+x y+y^{2}=3, \quad(1,1) \tag{6marks}
\end{equation*}
$$

b) Find $\frac{d y}{d x}$, given $y=\sin (\tan 2 x)$.
c) If $x=2 t /(t+2), y=3 t /(t+3)$, find $\frac{d y}{d x}$ in terms of t.
(4 marks)
d) Show that the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$ is satisfied when $y=x e^{2 x}$. (5 marks)

QUESTION FIVE (20 marks) `

a) The parametric equations for a hyperbola are $x=2 \sec \theta, y=4 \tan \theta$. Evaluate $\frac{d^{2} y}{d x^{2}}$, correct to 4 significant figures, when $\theta=1$ radian.
(6 marks)
b) The displacement $s \mathrm{~cm}$ of the end of a stiff string at time t seconds is given by: $s=a e^{-k t} \sin 2 \pi f t$. Determine the velocity and acceleration of the end of the spring after 2 seconds if $a=3, k=0.75$ and $f=20$.
(5 marks)
c) Determine the equation of the normal for the curve $y=2 x^{2}-3 x$ at the point $(1,2)$.
(4 marks)
d) The heat capacity c of a gas varies with absolute temperature as shown: $c=26.50+7.20 \times 10^{-3} \theta-1.20 \times 10^{-6} \theta^{2}$.
Determine the maximum value of c and the temperature at which it occurs.

