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QUESTION ONE (Compulsory) [30 Marks]

(a)
(b)

Differentiate between a vector and a scalar, giving an example in each case. [4 Marks]
The forces F; and Fy act on an object O and the object moves. State the forces that are
needed to prevent O from moving? [2 Marks]
Show that addition of vectors is commutative. [3 Marks]
Show that if u and v are non collinear, then zu + yv = 0 implies that 2 = 0 and y = 0.
[3 Marks]
(i) Prove that V- (V x A) = 0. [3 Marks]
(i) Tf A = (z9°,siny, 2?), find curl A at (1,3, -1). [3 Marks]
The acceleration of any particle at any time £ is given by

a = 12costi — 8sin 2tj + 16tk.

If the velocity V and displacement r are 0 at ¢ = 0. Find V and r at any time.
[4 Marks]

Evaluate the integral

/C [ydzr — zdy]

using Green'’s theorem, where C' is the circumference of the ellipse %; + %} =1.
[4 Marks]

(h) Use divergence theorem to find the flux output from the ellipsoid of volume V if F =
3zi+yj + zk. [4 Marks]
QUESTION TWO [20 Marks]
a) Given the space curve = =t, y = 2, z = 2¢*. Find the:
3
(i) curvature, &, and its radius, p. [8 Marks]
(i) torsion, 7, and its radius, o. [6 Marks]

(b)

Find the directional derivative of f(z,y,z) = z?yz 4+ 422% at (1, -2, —1) in the direction of
2i — j— 2k. [6 Marks|




QUESTION THREE [20 Marks]

(a) If A = (32% + 6y)i — 14yzj + 20z2°k. Evaluate [, A - dR from (0,0,0) to (1,1,1) along the
following curves C.

(i) z=t.y=1t2 2=t [3 Marks]
(ii) the straight lines from (0,0,0) to (1,0,0 then to (1,1,0) and finally to (1,1,1).
[4 Marks]
(iii) the straight line joining (0,0,0) to (1,1,1). [3 Marks]
(b) (i) State Green’s theorem. [2 Marks]

(ii) Evaluate the integral along the curve C.

/c [(y — 2°e")dz + (cos2y” — z)dy]

where C' is the rectangle with vertices (1,1),(0,1),(1,3) and (0, 3). [8 Marks]
QUESTION FOUR [20 Marks]
(a) Determine the constant c¢ such that the vector V. = (z + 3y)i + (v — 22)j + (z + cz)k is
solenoidal. [5 Marks]

(b) (i) State Stoke’s theorem. [2 Marks]
(ii) Verify Stoke’s theorem for A = (22 —y)i—y2z?j — y?zk where S is the upper half surface

of the sphere 22 + 92 + 22 = 1 and C is its boundary. [13 Marks]
QUESTION FIVE [20 Marks]

(a) Evaluate

//;A-ndS

where A = 182i — 12j + 3yk and S is that part of the plane 22 + 3y + 62 = 12 which is
located in the first octant. [10 Marks]

(b) (i) State divergence theorem. [2 Marks]

/fA-ndS
s

where A = 4z2i — y?j + yzk and S is the surface of the cube hounded by
r=0,r=1,y=0y=1,2=0,2=1. [8 Marks]

(ii) Use divergence theorem to evaluate




