

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION

SPECIAL RESIT 2 2020/2021 ACADEMIC YEAR REGULAR (MAIN)

COURSE CODE: SMA 202

COURSE TITLE: Vector Analysis

EXAM VENUE: STREAM: (BSc. Actuarial)

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (Compulsory)

[30 Marks]

- (a) Differentiate between a vector and a scalar, giving an example in each case. [4 Marks]
- (b) The forces \mathbf{F}_1 and \mathbf{F}_2 act on an object O and the object moves. State the forces that are needed to prevent O from moving? [2 Marks]
- (c) Show that addition of vectors is commutative.
- (d) Show that if **u** and **v** are non collinear, then $x\mathbf{u} + y\mathbf{v} = 0$ implies that x = 0 and y = 0.

[3 Marks]

[3 Marks]

(e) (i) Prove that $\nabla \cdot (\nabla \times \mathbf{A}) = 0$.

[3 Marks]

(ii) If $\mathbf{A} = (xy^2, \sin y, z^2)$, find curl \mathbf{A} at (1, 3, -1).

[3 Marks]

(f) The acceleration of any particle at any time t is given by

$$\mathbf{a} = 12\cos t\mathbf{i} - 8\sin 2t\mathbf{j} + 16t\mathbf{k}.$$

If the velocity V and displacement r are 0 at t = 0. Find V and r at any time.

[4 Marks]

(g) Evaluate the integral

$$\int_C \left[y \mathrm{d} x - x \mathrm{d} y \right]$$

using Green's theorem, where C is the circumference of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

[4 Marks]

(h) Use divergence theorem to find the flux output from the ellipsoid of volume V if $\mathbf{F} = 3x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. [4 Marks]

QUESTION TWO

[20 Marks]

- (a) Given the space curve $x=t,\ y=t^2,\ z=\frac{2}{3}t^3.$ Find the:
 - (i) curvature, κ , and its radius, ρ .

[8 Marks]

(ii) torsion, τ , and its radius, σ .

[6 Marks]

(b) Find the directional derivative of $f(x, y, z) = x^2yz + 4xz^2$ at (1, -2, -1) in the direction of $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$. [6 Marks]

QUESTION THREE

[20 Marks]

- (a) If $\mathbf{A} = (3x^2 + 6y)\mathbf{i} 14yz\mathbf{j} + 20xz^2\mathbf{k}$. Evaluate $\int_C \mathbf{A} \cdot d\mathbf{R}$ from (0,0,0) to (1,1,1) along the following curves C.
 - (i) $x = t, y = t^2, z = t^3$.

[3 Marks]

(ii) the straight lines from (0,0,0) to (1,0,0) then to (1,1,0) and finally to (1,1,1).

[4 Marks]

(iii) the straight line joining (0,0,0) to (1,1,1).

[3 Marks]

(b) (i) State Green's theorem.

[2 Marks]

(ii) Evaluate the integral along the curve C.

$$\int_C \left[(y - x^2 e^x) dx + (\cos 2y^2 - x) dy \right]$$

where C is the rectangle with vertices (1,1),(0,1),(1,3) and (0,3).

[8 Marks]

QUESTION FOUR

[20 Marks]

- (a) Determine the constant c such that the vector $\mathbf{V} = (x + 3y)\mathbf{i} + (y 2z)\mathbf{j} + (x + cz)\mathbf{k}$ is solenoidal. [5 Marks]
- (b) (i) State Stoke's theorem.

[2 Marks]

(ii) Verify Stoke's theorem for $A = (2x - y)\mathbf{i} - yz^2\mathbf{j} - y^2z\mathbf{k}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. [13 Marks]

QUESTION FIVE

[20 Marks]

(a) Evaluate

$$\iint_{S} \mathbf{A} \cdot \mathbf{n} dS$$

where $\mathbf{A} = 18z\mathbf{i} - 12\mathbf{j} + 3y\mathbf{k}$ and S is that part of the plane 2x + 3y + 6z = 12 which is located in the first octant. [10 Marks]

(b) (i) State divergence theorem.

[2 Marks]

(ii) Use divergence theorem to evaluate

$$\iint_{S} \mathbf{A} \cdot \mathbf{n} dS$$

where $A = 4xz\mathbf{i} - y^2\mathbf{j} + yz\mathbf{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [8 Marks]