JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION ARTS, SPECIAL EDUCATION AND EDUCATION SCIENCE $1^{\text {ST }}$ YEAR $2^{\text {ND }}$ SEMESTER 2017/2018 ACADEMIC YEAR REGULAR (MAIN)
COURSE CODE: SMA 105
COURSE TITLE: INTRODUCTION PROBABILITY AND DISTRIBUTION THEORY
EXAM VENUE: STREAM: (B.e.d ARTS, SPECIAL ed. \& SCIENCE)
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

## QUESTION ONE (30 MARKS)

a) In 20 independent trials, the probability of observing a certain outcome is 0.05 per trial. Find the probability of observing this trial outcome at least once.
(3 Marks)
b) In a telephone sub network, the probability that a telephone is out of order per day is 0.0003 . What is the probability of having 5 failures per day?
(3 Marks)
c) The weekly demand for bread, in thousands of loaves from a local chain efficiency stores is a continuous random variable $X$ having a probability density function given by

$$
f(x)=\left\{\begin{array}{cl}
3(x-1) & 1<x<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the mean and variance of $X$.
(5 Marks)
d) Show that the covariance of two random variables $X$ and $Y$ with means $\mu_{X}$ and $\mu_{Y}$ respectively is given by

$$
\begin{equation*}
\sigma_{X Y}=E(X Y)-\mu_{X} \mu_{Y} \tag{4Marks}
\end{equation*}
$$

e) Define the following terms as used in probability distributions.

- Uniform random variable
- Exponential random variable
- Gamma random variable
f) Let $X$ be a random variable with density function

$$
f(x)=\left\{\begin{array}{cc}
x^{2} / 3 & -1<x<2  \tag{3Marks}\\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the expected value of $g(x)=4 x+3$
g) Compute the mean and variance of the following rectangular distribution (6 Marks)

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a} & a<x<b \\
0 & \text { otherwise }
\end{array}\right.
$$

## QUESTION TWO (20 MARKS)

a) Suppose that the probability of a successful outcome in an experiment is given as 0.4. If 15 independent trials of the experiment are made, determine if;
i. $\quad p(X=3)$
ii. $\quad p(6 \leq X \leq 9)$
iii. $\quad p(X \geq 10)$

Given that X is the number of successes.
b) The fraction X of male runners and the fraction Y of female runners who compete in marathon races are described by the joint density function ;
$f(x, y)=\left\{\begin{array}{cc}8 x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { elsewhere }\end{array}\right.$. Find the covariance of $X$ and $Y$.

QUESTION THREE (20 MARKS)
a) From a well -shuffled pack of 52 cards, 3 cards are taken at random. Find the probability of getting;
(10 Marks)
i. at least 2 red cards .
ii. at best 2 red cards.
iii. no red cards.
b) Given a function of continuous random variable $X$ as follows $f(x)=k x(1-x)$ with range space $R:\{X: 0 \leq x \leq 1\}$. Is $f(x)$ a density function? If so, find $P\left(A_{1}\right)$ where $A_{1}=\{X: 0 \leq x \leq 1 / 3\}$ and $P\left(A_{2}\right)$ where $A_{2}=\{X: x \geq 1 / 2\}$

## QUESTION FOUR ( 20 MARKS)

Two regular tetrahedral are used in an experiment to obtain pairs of values $\left(x_{i}, y_{i}\right)$. The values on the face of the tetrahedral are numbered $1,2,3,4$ and $x_{i}$ is the value on the phase looking down on the tetrahedron $\mathrm{A}, y_{i}$ on the tetrahedron B or A , the larger of the two.
Possible pairs $\left(x_{i}, y_{i}\right)$ and corresponding probabilities are listed below

| $(X, Y)$ | $(1,1)$ | $(1,2)$ | $(1,3)$ | $(1,4)$ | $(2,2)$ | $(2,3)$ | $(2,4)$ | $(3,3)$ | $(3,4)$ | $(4,4)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x, y)$ | $1 / 16$ | $1 / 16$ | $1 / 16$ | $1 / 16$ | $2 / 16$ | $1 / 16$ | $1 / 16$ | $3 / 16$ | $1 / 16$ | $4 / 16$ |

Obtain
i. $\quad \mathrm{F}(2,3)$
ii. $\quad f_{Y}(y) \quad \forall y$
iii. $f_{x}(x) \quad \forall x$

## QUESTION FIVE (20 MARKS)

a) A random variable $X$ has a density function $f(x)=\left\{\begin{array}{cc}\lambda e^{-\lambda x} & \lambda>0 ; x \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$. Find
i. $\quad E(X)$
ii. $\quad \operatorname{var}(X)$
b) The probability mass function of a geometric distribution is given by

$$
f(x)=\left\{\begin{array}{cc}
p q^{x} & x=0,1,2 \ldots \\
0 & \text { otherwise }
\end{array}\right.
$$

Compute the mean and variance of this geometric distribution.

