
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344655186

Tracking Area Boundary-aware Protocol for Pseudo Stochastic Mobility

Prediction in LTE Networks

Article · October 2020

CITATIONS

0
READS

77

3 authors:

Some of the authors of this publication are also working on these related projects:

Computer Networks View project

Systems Dynamics View project

Vincent O. Nyangaresi

University of Nairobi

37 PUBLICATIONS   9 CITATIONS   

SEE PROFILE

Silvance O. Abeka

Jaramogi Oginga Odinga University of Science and Technology

40 PUBLICATIONS   66 CITATIONS   

SEE PROFILE

Anthony Joachim Rodrigues

Jaramogi Oginga Odinga University of Science and Technology

40 PUBLICATIONS   79 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Vincent O. Nyangaresi on 14 October 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344655186_Tracking_Area_Boundary-aware_Protocol_for_Pseudo_Stochastic_Mobility_Prediction_in_LTE_Networks?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344655186_Tracking_Area_Boundary-aware_Protocol_for_Pseudo_Stochastic_Mobility_Prediction_in_LTE_Networks?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Computer-Networks-10?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Systems-Dynamics-3?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincent-Nyangaresi?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincent-Nyangaresi?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Nairobi?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincent-Nyangaresi?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Silvance-Abeka-2?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Silvance-Abeka-2?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Jaramogi_Oginga_Odinga_University_of_Science_and_Technology?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Silvance-Abeka-2?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony-Rodrigues-3?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony-Rodrigues-3?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Jaramogi_Oginga_Odinga_University_of_Science_and_Technology?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony-Rodrigues-3?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincent-Nyangaresi?enrichId=rgreq-a135c5dc36f08953aba5547c695ffe56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDY1NTE4NjtBUzo5NDY1NTA0NDg2MTEzMjhAMTYwMjY4NjYyMTExNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


I.J. Information Technology and Computer Science, 2020, 5, 52-62 
Published Online October 2020 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijitcs.2020.05.04 

Copyright © 2020 MECS                                            I.J. Information Technology and Computer Science, 2020, 5, 52-62 

Tracking Area Boundary-aware Protocol for 

Pseudo Stochastic Mobility Prediction in LTE 

Networks 
 

Vincent Omollo Nyangaresi 
School of Information Sciences and Technology, Kisii University, 40200 - Kenya 

E-mail: vincent@kisiiuniversity.ac.ke 

 

Silvance O. Abeka 
School of Informatics & Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology - Kenya 

E-mail: silvancea@gmail.com 

 

Anthony J. Rodrigues 
School of Informatics & Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology - Kenya. 

E-mail: tonyr@jooust.ac.ke 

 

Received: 29 December 2019; Accepted: 14 February 2020; Published: 08 October 2020 

 

 

Abstract: Accurate mobility prediction enables efficient and faster paging services in these networks. This in turn 

facilitates the attainment of higher bandwidths and execution of activities such as handovers at low latencies. The 

conventional mobility prediction models operate on unrealistic assumptions that make them unsuitable for cellular 

network mobile station tracking. For instance, the Feynman-Verlet, first order kinetic model and Random Waypoint 

assume that mobile phones move with constant velocity while Manhattan, Freeway, city area, street unit, obstacle 

mobility, and pathway mobility postulate that mobile station movement is restricted along certain paths. In addition, 

obstacle mobility model speculate that the mobile station signal is completely absorbed by an obstacle while random 

walk, random waypoint, Markovian random walk, random direction, shortest path model, normal walk, and smooth 

random assume that a mobile station can move in any direction. Moreover, the greatest challenge of the random 

direction model is the requirement that a border behavior model be specified for the reaction of mobile stations reaching 

the simulation area boundary. In this paper, a protocol that addresses the border behavior problem is developed. This 

protocol is shown to detect when the subscriber has moved out of the current tracking area, which is crucial during 

handovers. 

 

Index Terms: Boundary detection, Mobility prediction, modeling, LTE, latency. 

 

 

1.  Introduction 

The field of mobile communication systems has tremendously shifted starting from the second generation Global 

System for Mobile Communications (2G/GSM), third generation Universal Mobile Telecommunication Systems 

(3G/UMTS), the fourth generation Long Term Evolution (4G/LTE) systems to the fifth generation (5G) networks.In 

cellular networks, mobility prediction is concerned with envisaging of the mobile station’s next movement. By 

accurately employing the predicted movement, the network is capable of attaining enhanced resource allocation and 

reservations, better assignment of cells to location areas, more efficient paging, and call admission control.  

The ultimate goal of mobility prediction models is to make an attempt in imitating the movement of real mobile 

stations (MSs), which are characterized by the change of speed and direction with time [1]. This allows the network to 

track the current location of the subscribers. In so doing these mobility models permit voice calls, short messaging 

services (SMS), general packet radio services (GPRS) and other mobile phone services to be delivered to the 

subscribers. 

According to [2], mobility prediction models are significant in the provision and maintenance of communication 

with a mobile user at any given point in time. This is particularly true now that there has been a growing trend of the 

convergence of numerous financial services such as banking applications with mobile communication services. 

However, with the swift growth in the number of mobile subscribers globally, mobility prediction has emerged as one 
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of the most important and challenging tasks for mobile communication systems.  

Since majority of subscribers experience random atomic movements within the coverage area, random waypoint 

and random direction mobility are popular in depicting such movements. However, both models assume that subscribers 

can move anywhere within the coverage area. This is unrealistic as physical obstacles such as mountains and water 

bodies can impede such random mobility. In addition, random waypoint model ignores direction changes while random 

direction requires the definition of border behavior when the subscriber approaches the cellular network boundary. The 

contributions of this paper include the following:  

 

1) We develop a protocol that combines the random waypoint model and random direction model that is 

demonstrated to have realistic mobility prediction. 

2) We design and develop the boundary behavior of user equipment (UE) to address the border behavior problem 

in random direction model. 

3) We demonstrate through simulations that when the cumulative density function (CDF) of the received signal 

level is higher than the threshold signal level,𝑃𝑚𝑖𝑛 , the UE is within the coverage area. On the other hand, if the CDF is 

lower than  𝑃𝑚𝑖𝑛, then the UE is at the cluster boundary. 

 

The rest of this paper is organized as follows: section II provides related work in the area of mobility prediction 

while part III gives the methodology adopted to develop our protocol. Section IV presents the results obtained from the 

simulations as well as the discussion while part, section V concludes the paper. 

2.  Related Work  

A number of studies have been carried out in mobile station prediction and as such, many mobility predictions 

have been developed. Due to the significance of mobility prediction, several studies have been conducted and their 

results have led to the development of a number of mobility prediction models such as random waypoint, random walk, 

random Markovian walk, random direction mobility, smooth random mobility, cell-residence-time-based, Gauss–

Markov, Fluid Flow, normal walk, shortest path, activity-based, pursue mobility, nomadic community mobility, 

reference point group mobility(in-place mobility, overlap mobility, convention mobility), Manhattan grid, pathway 

mobility, obstacle mobility, Freeway mobility, Street Unit, Street Pattern Tracing, mobility vector, gravity models, city 

section mobility, city area mobility, First order Kinetic, Feynman-Verlet, Semi-Hidden Markov, Autoregressive (AR), 

and Global Mobility among others[3]. 

In obstacle mobility model, mobile station mobility is depicted by taking into consideration real-life scenarios such 

as the fact that people move towards specific destinations rather than randomly choosing some destinations; obstacles 

such as buildings, parks or rivers can block people’s movements as well hinder signal propagation; and that people do 

not walk along random directions but along pathways and select shortest paths [4]. In street unit model, the mobile 

station is permitted to move on a rectangular, Manhattan grid only, where the grid depicts the street pattern of suburban 

or urban areas [5] while city area mobility model is utilized to describe mobile station mobility and traffic behaviour 

within a city area environment. The random walk model is an individual mobility model that is memory-less since it 

does not retain knowledge related to its past speed and direction [3] while [6] discuss the random waypoint model as a 

simple stochastic model in which a mobile station moves on a restricted continuous plane from its current position to a 

new location by randomly choosing its destination coordinates, its speed of movement, and the amount of time that it 

will pause on arriving at the destination. 

The Markovian random walk model is modified form of the random walk model that utilizes Markov chains to 

describe the mobile station movement, and it introduces memory in the movement behavior of the mobile station [7]. 

Random direction model is described by [8] as a model in which the UE randomly selects a direction from a given 

interval and moves in that direction. Another mobility prediction model is the shortest path model in which an UE 

follows the shortest path measured by the number of cells passed through, from source to destination [9]. 

The normal walk model is straight-oriented mobility model which assumes that a mobile station moves in unit 

steps on a Euclidean plane [10]. The smooth random mobility model is an enhanced random mobility model that makes 

the movement trace of individual mobile stations more realistic than common approaches for random movement [11]. 

Microscopic models depict the movement of a single mobile station by its space and speed coordinates at a given time 𝑡, 

and the goal here is to obtain a very detailed representation for one entity within the network coverage area. Such 

models include Street Unit Models and Street Pattern Tracing Models [12]. On the other hand, mesoscopic models 

depict the homogenized movement behaviour of several mobile stations instead of only one. As pointed out by [13], the 

mobile users shift as groups (hence group models). Examples of these models include Reference Point Group Mobility 

(In-Place Mobility, Overlap Mobility, and Convention Mobility) and Mobility Vector model. 

Macroscopic models focus is on density, mean speed, speed variance, and traffic flow of vehicles. Examples of 

these models include fluid flow models, gravity models and the random walk models [14]. In reference point group 

model, each group has a center that can be either a logical center or a group leader mobile station. Here, each group is 

made up of one leader and a number of members [15]. Colum mobility model is described by [16] as being ideal for 
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mimicking a set of mobile stations such as robots moving in a certain fixed direction while [17] designate pursue 

mobility model as being a model in which the pursuer mobile stations direct their velocity towards the position of the 

targeted mobile station in an attempt to intercept it. Regarding nomadic community mobility model, [18] expound that 

in this model, the entire group of mobile stations shifts randomly from one location to another and the reference point of 

each mobile station is established based on the common movement of this group. 

In [19], the authors discuss that in activity-based models, once the location for the next activity has been 

determined, the route from the current location to this activity location is computed in terms of cells traversed. In cell-

residence-time-based model, the idea here is to establish the connection time spent by a mobile station within one 

location. According to [20], this requires the tracing of the movement of individual users. The authors in [21] discuss 

that in pathway mobility model, initially, the UEs are randomly positioned on the edges of the graph and then for each 

mobile station, a destination is selected arbitrarily and the mobile station moves towards this destination via the shortest 

path along the edges. 

3.  Methodology 

The developed protocol employed atomic subscriber movements and hence the mobility prediction model adopted 

was microscopic in scope. On mobility pattern, the protocol utilized pseudo-stochastic movements which were depicted 

by the boundary –aware combination of the random waypoint and random direction mobility prediction models. The 

random waypoint was chosen owing to its ability to depict motion waypoints, velocity and pause time while the random 

direction mobility model was selected because of its ability to incorporate direction changes after every waypoint.  The 

random direction model was modified to address its border behavior specification problem by the incorporation of a 

border behavior to specify the reaction of mobile stations reaching the simulation area boundary, which was treated as 

the simulated obstacle.  

This was achieved by specifying the threshold received power, 𝑃𝑚𝑖𝑛 and computing the CDF to determine the 

probability the received signal may be higher or lower than this threshold. Here, when the CDF is higher than 𝑃𝑚𝑖𝑛 , the 

UE is within the coverage area. On the other hand, if the CDF is lower than  𝑃𝑚𝑖𝑛, then the UE is on the cluster 

boundary. When this happens, the neuro-fuzzy algorithm is invoked to initiate handover request to the target cell. 

In the developed protocol, upon reaching the cluster boundary, only the UE movement is blocked by the boundary 

(treated as an obstacle in this case) and the signals can still reach their intended destination. Essentially, the obstacle 

forced the mobile station to bounce off and look for alternative paths to the destination. Here, an UE enters and exits 

with equal probability the cellular network coverage area at arbitrary selected point 𝑃𝑖 and  𝑃𝑜 on the circle enclosing 

the coverage area respectively, as shown in Fig. 1.  The implication is that in Fig.1 both 𝜃𝑖  and 𝜃𝑜  are uniformly 

distributed in [0,2𝜋] and 𝜃𝑛 = |𝜃𝑖 − 𝜃𝑜|.  The probability density functions (PDFs) of the entry and exit locations are 

equal to 
1

2𝜋
.  

 

 

Fig.1. Cellular Network Coverage Area Modeling 

To model UE mobility pattern in the cellular network using the developed pseudo-stochastic mobility tracking 

protocol, the cellular network surface area was first estimated. To accomplish this, the hexagonal cellular network is 

divided into 6 isosceles triangles each of height ℎ as shown in Fig. 1. The base of each of these triangles is R and the 

sum of all exterior angles is equal to 360  degrees and hence 𝜃 =
360

12
= 30 degrees.Mathematically: 

 

𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝜃 =
𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡
=

𝑅

2

ℎ
;  tan 300 =

𝑅

2ℎ
                                                           (1)
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But tan 300 = 0.5773 =
√3

3
 and Hence (1) assumes the form given in (2): 

 
√3

3
=

𝑅

2ℎ
; ℎ =

3𝑅

2√3
                                                                              (2) 

 

The area of a triangle is 
1

2
𝑏ℎ, where 𝑏 is the base and ℎ is the height. From Fig. 1, the base is 

𝑅

2
 and hence the area 

is expressed by (3): 

 

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑎𝑟𝑒𝑎 =
1

2
∗

𝑅

2
∗

3𝑅

2√3
=

3𝑅2

4√3
                                                            (3) 

 

The hexagon consists of six triangles and hence its area assumes the form given in (4): 

 

𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙𝑎𝑟𝑒𝑎,  𝐴ℎ𝑒𝑥 = 6 ∗ 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑎𝑟𝑒𝑎 

                                                   = 6*
3𝑅2

4√3
=

3√3

2
𝑅2                                                             (4) 

 

From (4), the area of the hexagonal cellular network is 2.598𝑅2 and is the value employed for the computation of 

the various handover figures of merit as discussed in the next sub-section. The algorithm for the pseudo-stochastic 

mobility tracking protocol required input parameters that included propagation environment factors, threshold received 

power, the reference distance, transmitter-UE distance, and transmitted power as shown in Fig. 2.   

 
INPUT:  Propagation environment factors, threshold received power, the reference distance, transmitter-UE distance, transmitted power 

OUTPUT:  Path losses, average received power, mobility pattern tracking, boundary detection 
BEGIN: 

/* Pseudo-Stochastic Mobility Tracking Protocol */ 

1. Instantiate propagation environment factors, 𝐴 and 𝐵; maximum number of waypoints 𝑖, 𝑁 

2. Initialize  a zero mean Gaussian distributed random variable  with standard deviation 𝜎, 𝑋 

3. Initialize a vector spelling out that the UE  picks its movement interval 𝑖, 𝑃𝑖
(𝑗)

 

4. Instantiate threshold received power, 𝑃𝑚𝑖𝑛 

5. Instantiate error function, 𝑒𝑓 and cell reliability standard deviation, 𝑧 

6. Measure the reference distance, 𝑑0 

7. Measure the transmitter-UE distance, 𝑑 

8. Measure the transmitted power, 𝑃𝑡 

9. Derive the average large-scale path loss, 𝑃𝐿(𝑑)̅̅ ̅̅ ̅̅ ̅ 

𝑃𝐿(𝑑)̅̅ ̅̅ ̅̅ ̅ = 𝐴 + 𝐵𝑙𝑜𝑔 (
𝑑

𝑑0
) 

10. Compute average received power  at any distance 𝑑 from the transmitter, 𝑃𝑟  (𝑑)̅̅ ̅̅ ̅̅ ̅̅  

𝑃𝑟  (𝑑)̅̅ ̅̅ ̅̅ ̅̅ = 𝑃𝑡 − 𝑃𝐿(𝑑)̅̅ ̅̅ ̅̅ ̅ 

11. Derive the path loss at any value of 𝑑, 𝑃𝐿(𝑑) 

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑)̅̅ ̅̅ ̅̅ ̅ + 𝑋 = 𝐴 + 𝐵𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋 

12. Derive the Q function, 𝑄(𝑧)/* x is the signal of interest*/ 

𝑄(𝑧) =
1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥 =
1

2

∞

𝑧

[1 − 𝑒𝑓 (
𝑧

√2
)] 

  /* Random Waypoint Model */ 

    IF cell boundary detection not required initially THEN 

13. Choose a random waypoint 𝑃𝑖
(𝑗)

for each movement period i 

{𝑃𝑖
(𝑗)

}𝑖∈𝑁 = 𝑃0
(𝑗)

, 𝑃1
(𝑗)

, 𝑃2
(𝑗)

, 𝑃3
(𝑗)

, … 

14. Compute  a new speed 𝑉𝑖from the PDF [𝑣𝑚𝑖𝑛,𝑣𝑚𝑎𝑥] for movement from 𝑃𝑖−1to 𝑃𝑖 

15. Calculate  pause time 𝑇𝑝,𝑖at waypoint 𝑃𝑖 

16. Trace UE movement process within  𝐴ℎ𝑒𝑥 

{(𝑃𝑖 , 𝑉𝑖 , 𝑇𝑝,𝑖)}
𝑖∈𝑁

= (𝑃1, 𝑉1, 𝑇𝑝,1); (𝑃2, 𝑉1, 𝑇𝑝,2);  (𝑃3, 𝑉3, 𝑇𝑝,3), …. 

        IF𝑖 less than 𝑁 THEN 

17. GO BACK TO step (9) 

        ELSE 
18. GO TO step (26) 

    ENDIF 

ELSE 

  /* Modified Random Direction Model with Cluster Boundary Detection */ 

19. Compute probability that the received signal level is less or more than 𝑃𝑚𝑖𝑛, 𝑃𝑅 

20. IF 𝑃𝑅[𝑃𝑟(𝑑) > 𝑃𝑚𝑖𝑛] THEN 

𝑃𝑅  CDF = 𝑄 (
𝑃𝑚𝑖𝑛 − 𝑃𝑟(𝑑)̅̅ ̅̅ ̅̅ ̅

𝜎
) 

21.  UE stays within the current eNB 

22. GO BACK TO step (9) 

23. ELSEIF 𝑃𝑅[𝑃𝑟(𝑑) < 𝑃𝑚𝑖𝑛] THEN 

𝑃𝑅  CDF = 𝑄 (
𝑃𝑟(𝑑)̅̅ ̅̅ ̅̅ ̅ − 𝑃𝑚𝑖𝑛

𝜎
) 

24. Obstacle detected, UE handed over at 𝑃𝑜or searches for alternative path to destination within  𝐴ℎ𝑒𝑥 

          ENDIF 
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25. Initialize new starting point Xi = (xi, y1) , absolute angle φi, unit vector along the absolute angle a(φi), length li , velocity vi, and pause time tp,i 

26. Compute subsequent waypoint 𝑋𝑖+1 

𝑋𝑖+1 = 𝑋𝑖 + 𝑎(𝜑𝑖). 𝑙𝑖 ; 𝑡𝑖+1 = 𝑡𝑖 + 𝑡𝑝,𝑖 + 𝑖𝑖/𝑣𝑖 

         IF𝑖 = 𝑁 THEN 

27. Terminate  

       ELSE 

28. GO BACK TO step (9) 

  ENDIF 

       ENDIF 

     ENDIF 

END 

Fig.2. Algorithm for Pseudo-Stochastic Mobility Tracking Protocol 

Thereafter, a number of computations were executed which comprised of derive the average large-scale path loss 

(step-9), average received power at any distance 𝑑 from the transmitter (step-10), path loss at any value of 𝑑 (step-11), 

derivation of the Q function based on the signal of interest and the cell reliability standard deviation (step-12), selection 

of random waypoint for each movement period (step-13), computation of  a new velocity for the next motion waypoint 

(step-14), calculation of the pause time at the new waypoint (step-15), computation of the probability that the received 

signal level is less or more than the threshold value (step-19). 

On condition that the value in step (19) is more than the threshold value, the UE was still within the current eNB. 

This was accomplished through invoking the random direction mobility model in which the current location is initalized 

as a new starting point and the new mobility parameters such as absolute angle from the range [0, 2𝜋], unit vector along 

the absolute angle, new waypoint length, new velocity and  pause time are also initialized (step-25). Thereafter, the 

subsequent UE location is computed (step-26) and the process repeats itself (step 28). In case the subscriber is handed 

over to the new tracking area, then the PDF of using any location of the circular radio frequency coverage area is 
1

2𝜋
 as 

already elaborated. Fig. 3 models these pseudo-stochastic mobility tracking protocol procedures. 

The output of this algorithm include path losses, average received power, mobility pattern tracking, and boundary 

detection, all of which helped track the mobility of the UE within the coverage area depicted in Fig. 2 above. The 

modeling described in this section was then converted into source codes which were then executed in Python 

programming language to yield the results discussed in section IV below. 

 

 

Fig.3. Modeling Pseudo-Stochastic Mobility Tracking Protocol 
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However, if this value is less than the threshold value, then the UE is at the cluster boundary and should either be 

handed over or search for a new route to the destination (step-18).  

4.  Results 

The developed protocol combined both random direction mobility model and random waypoint mobility model 

into a single model. At the onset of subscriber mobility, random waypoint mobility was initiated but upon boundary 

detection, the modified random direction model was activated. As shown in Fig. 4, the UE mobility is characterized by 

random selection of destination coordinates, velocity and pause time in accordance with the random waypoint model. 

This is the stochastic mobility which represents the randomness of mobility. 

 

 

Fig.4. Pseudo-Stochastic Mobility 

The UE adopts the random waypoint model so long as the received power Pr(d) is less than the threshold power, 

Pmin. The simulations that were carried out yielded -182 dB as Pmin, which was the received power at the onset of HPHR. 

As Fig. 4demonstrates, during the observation period, three boundary locations were detected.  

As detailed in Fig. 5, upon the reduction of the Pr(d)below Pmin, an UE shifted from the random waypoint model to 

the modified random direction model in which the new starting point Xi , absolute angle φi , unit vector along the 

absolute angle a(φi), length li , velocity vi, and pause time tp,i are computed at the onset of the movement process. 

 

 

Fig.5. Boundary Detection 
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In the modified random direction (MRD) model, the values for the direction were taken from a uniform 

distribution on the interval [0, 2𝜋] while the values for the velocity followed a uniform distribution. As shown in Fig. 5, 

the first boundary location was detected (OBST) near the MME at A ( -323.0 -8.0) at which the Pr(d)was -211.0 dB 

while the CDF was approximately 0.16. Upon boundary detection, an UE was redirected at absolute angle φi = 490 

with vi = 5.0 𝑀/𝑆𝑒𝑐 and new starting point Xi = (280, −103.92).  

The second boundary was detected at B ( -301.0 -178.0)at which the Pr(d)was -213.0 dB while the CDF was 

approximately 0.17. Upon boundary detection, an UE was redirected at absolute angle φi = 1510 with vi = 1.0 𝑀/𝑆𝑒𝑐 

and new starting pointXi = (280, −103.92). The third boundary location was detected at C (-361.0 -170.0)at which the 

Pr(d)was -216.0dB while the CDF was approximately 0.19. Upon boundary detection, an UE was redirected at absolute 

angle φi = 240 with vi = 5.0 𝑀/𝑆𝑒𝑐 and new starting point Xi = (280, −103.92). In Table 1, the variations of CDF 

against the received signal level P(rd) at a constant Pmin value of -182 dB are given. 

Table 1. Variation of CDF Against P (rd) 

Simulation Iterations Pmin(dB) P(rd)(dB) CDF Value 

1 -182 -211 0.158 

2 -182 -214 0.174 

3 -182 -217 0.191 

4 -182 -212 0.164 

5 -182 -213 0.169 

6 -182 -215 0.180 

7 -182 -218 0.196 

 

As shown in Table 1, the value of Pmin was maintained at -182 dB while the value of received signal levels were 

measured as the UE traversed the tracking area. The highest P(rd)was -211 dB while the least P(rd)was -218 dB. Fig. 6 

presents a graph of CDF against the received signal levels at various locations within the tracking area. 

 

 

Fig.6. CDF Variations with P(rd) 

Fig. 6 demonstrates that graph of CDF against P(rd) is linear, implying that as the value of P(rd) is increased, the 

value of CDF reduces and vice versa. As such, when an UE is located near the eNB, the value of P(rd)is high and the 

CDF value if very low and hence the cell boundary is located far away from the eNB. On the other hand, when an UE is 

further away from the eNB, the value of P(rd) is very low but the value of CDF is very high, implying that the UE is at 

the proximity of the cell boundary. 

In addition, the developed protocol detected when the UE moved out of the current tracking area to the next 

tracking area as shown in Fig. 7. As demonstrated here, an UE was detected to be shifting towards the neighbouring 

tracking area at a location whose coordinates were 73.0, 318.0 at a velocity of 4.0  

M/Sec and as such, the control of the communication process was transferred to the macro-cell. This is because 

macro-cells span relatively large coverage areas and as such are better suited to control the communication for UEs that 

frequently shift from one cluster to another so as to offer seamless connectivity. 

Based on the mobility traces of Fig. 4 and Fig. 7, the values of li were different for diverse UE movements. This is 

further confirmed by a sample of the mobility vectors depicted in Fig. 8 below. In (a), the UE has a starting Xi =
(280, 255), φi = 19, a(φi) = 0.749, 𝑙𝑖 = 17.99, vi = 5 and tp,i = 0.  
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Fig.7. Neighbouring Tracking Area Detection 

This mobility was accompanied by the random shifting of the UE mobility vectors, some of which are shown in 

Table 2. 

 

 

Fig.8. Pseudo-Stochastic Mobility Tracking 

The UE X-axis coordinates shifted from a maximum of 280 to the minimum of 92 while the Y-axis coordinates 

shifted from maximum value 𝑋𝑚𝑎𝑥 of 255 to a minimum 𝑋𝑚𝑖𝑛 of -70.  

Table 2. Tracking Mobility Vectors 

Simulation Iterations (𝐱𝐢, 𝐲𝟏) 𝛗𝐢 𝐚(𝛗𝐢), 𝐥𝐢 𝐯𝐢, 𝐭𝐩,𝐢 

1 280.0 , 255.0 19 0.749 17.99 5 0 

2 263.0 , 249.0 127 0.973 27.234 1 1 

3 263.0 , 249.0 103 0 0 0 1 

4 125.0 , -23.0 63 0.335 5.021 2 2 

5 114.0 , -70.0 39 2.891 34.697 3 1 

6 104.0 , -39.0 64 3.680 33.121 4 1 

7 92.0 , 26.0 135 0.353 7.776 4 2 

 

Regarding the absolute angle, its value dropped from the maximum 𝛗𝒎𝒂𝒙of 1350  to the minimum 𝛗𝒎𝒊𝒏 of 190. 

The unit vector along this absolute angle shifted from a peak value a(𝛗)(max) of 3.680 to the lowest value a(𝛗)(min) of 

0. On its part, the waypoints selected peaked 𝑙𝑚𝑎𝑥  value of 34.697 and ditched at the lowest 𝑙𝑚𝑖𝑛  value of 0. The 

maximum velocity𝑣𝑚𝑎𝑥 was 5 while the minimum velocity  𝑣𝑚𝑖𝑛 was 0 when the UE selected 0 waypoint at (c) in Fig. 

8. Fig. 9 presents the graphs for the figures of merit shown in Table 2. 
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Fig.9. Variations of Mobility Vectors 

All the graphs in Fig. 9 demonstrate that the mobility vectors were randomly selected for each UE movement. In 

Fig. 9 (a), the UE coordinates is observed to be stochastic, similar to the variation of absolute angle (b), unit vector 

along the absolute angle (c), waypoints (d), velocity (e) and pause time (f). 

Fig. 10 compares the pseudo-stochastic mobility with the combined random direction and random waypoint 

mobility models. As demonstrated in Fig. 10 (a), although the conventional random mobility models define new starting 

point Xi, random waypoint 𝑃𝑖
(𝑗)

for each movement period i, pause time 𝑇𝑝,𝑖at waypoint 𝑃𝑖, absolute angle φi, unit vector 

along the absolute angle a(φi),  and velocity vi, they both fail to define the boundary behavior upon obstacle detection. 

As such, the UE is observed to have moved well beyond the cluster boundary. This challenge was addressed in the 

developed protocol by use of CDF for both  𝑃𝑚𝑖𝑛 and the received signal level and hence was able to define boundary 

behavior as illustrated in Fig. 10 (b). This is the pseudo-stochastic mobility that this research paper sought to achieve 

such that the subscriber mobility within the cellular network is able to recognize the presence of obstacles that impede 

mobility in any direction. In so doing, the subscriber mobility assumes more realistic assumptions. 

(a) (b) 

(c) 
(d) 

(e) (f) 
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Fig.10. Pseudo-Stochastic Mobility and Random Mobility Models Comparison 

5.  Conclusion 

The current random waypoint mobility model fails to consider direction changes after every waypoint. Although 

the random direction model addresses this problem, it requires that a border behavior be defined to guide mobility as the 

UE approaches the boundary. In this paper, a tracking area boundary-aware protocol for pseudo stochastic mobility 

prediction in LTE networks was designed, developed and simulated. In the developed protocol, the problem of 

boundary behavior for random direction mobility model has been addressed using CDF and received signal levels. The 

simulation results for UE coordinates, absolute angle, unit vector along this absolute angle, waypoints, velocity and 

pause times showed that this protocol is truly pseudo-stochastic. In addition, the developed protocol was observed to 

have abilities to detect when an UE has moved out of the current tracking area. Since LTE networks endeavor to attain 

lower latency compared to legacy cellular networks, the developed protocol is ideal for faster paging services that 

ultimately ensure high data rates. Future work lies on the investigation of the performance of the developed protocol in 

LTE in terms of bandwidth improvements. There is also need for further research on the applicability of this protocol 

for low latency vertical as well as horizontal handovers in cellular networks. 
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