JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL

RESIT 2
REGULAR (MAIN)

COURSE CODE: SMA 303
COURSE TITLE: COMPLEX ANALYSIS
EXAM VENUE:
DATE:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

a) Define the following terms as used in complex analysis
i) A complex number z.
(2 marks)
ii) The principal argument.
iii) Interior point, z_{o} of a set S of the complex plane.
b) If $z_{1}=2-3 i$ and $z_{2}=4+6 i$, find $\frac{z_{2}}{z_{1}}$.
c) Evaluate the complex function $f(z)=2 z^{2}+4 \bar{z}-4 i$ at $z=2+3 i$.
d) Find an upper bound for the reciprocal of $z^{5}-6 z+2$ if $|z|=2$.
e) Write the given complex number $z=-\sqrt{3}+i$ in polar form using i) an argument $\theta \neq \operatorname{Arg}(\theta)$
ii) $\theta=\operatorname{Arg}(\theta)$
f) Compute the given complex limit, $\lim _{z \rightarrow i}\left(z^{5}-z^{2}+z\right)$.
g) Describe all the transformations represented by a complex mapping $f(z)=4 i z+2+3 i$.

QUESTION TWO (20 marks)

a) State De-Moivre's theorem, hence use it to evaluate $(2-2 i)^{5}$, leaving your answer in the form $a+i b ; a, b \in \mathbb{R}$.
b) Describe the set of points z in the complex plain that satisfy $|z|=|z-2 i|$. (5 marks)
c) Given $z_{1}=\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$ and $z_{2}=\sqrt{3}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$, determine the value of $z_{1} z_{2}$
d) State the Cauchy's integral formula and hence evaluate

$$
\begin{equation*}
\oint_{C} \frac{z^{2}-3 z+4 i}{z+2 i} d z ;|z|=3 \tag{5marks}
\end{equation*}
$$

QUESTION THREE (20 marks)

a) Compute the $n^{\text {th }}$ root for the complex number $(-1-\sqrt{3} i)^{\frac{1}{4}}$. Hence sketch the roots w_{0}, w_{1}, w_{2} and w_{3} on an appropriate circle centred at the origin. (6marks)
b) Use the quadratic formula to solve $z^{2}+i z-2=0$, hence or otherwise factorize the polynomial.
(6marks)
c) Find the image of the line $y=1$ under the complex mapping $w=z^{2}$ and represent the line and the mapping graphically.
d) Find the value of the complex exponential form e^{z} at the point $z=4+\pi i$.

QUESTION FOUR (20 marks)

a) Find solutions of the homogeneous differential equation

$$
\begin{equation*}
y^{I I}+2 y^{I}+2 y=0 \tag{5marks}
\end{equation*}
$$

b) Find the derivatives of the following complex functions
i) $f(z)=3 z^{4}-5 z^{2}-7 z$, where $z \in \mathbb{C}$.
ii) $f(z)=\frac{2 z^{3}+4 z}{4 z+3}$, where $z \in \mathbb{C}$.
c) Find the real and imaginary parts $u(x, y)$ and $v(x, y)$ of the complex function $f(z)=z^{2}-2 z+6$.
d) Use L' Hospital's rule to compute $\lim _{z \rightarrow 2+i} \frac{z^{2}-4 z+5}{z^{3}-z-10 i}$.

QUESTION FIVE (20 marks)

a) The function $f(z)=3 z^{2}+5 z-6 i$ is analytic for all z. Determine whether the Cauchy-Riemann equations are satisfied or not.
b) Evaluate $\int x y d x+x^{2} d y$ over the C, where C is the graph of $y=x^{3}$ and $-1 \leq x \leq 2$
c) Given the function $u(x, y)=x^{3}-3 x y^{2}$
i) Verify that $u(x, y)$ is harmonic in an appropriate domain D.
ii) Find $v(x, y)$ the harmonic conjugate of $u(x, y)$.
iii) Form the corresponding analytic function $f(z)=u+i v$.

