

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL RESIT 2 REGULAR (MAIN)

COURSE CODE: SMA 303

COURSE TITLE: COMPLEX ANALYSIS

EXAM VENUE:

STREAM: (BSc. Actuarial)

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

a)	Define the following terms as used in complex analysis		
	i)	A complex number z.	(2 marks)
	ii)	The principal argument.	(2 marks)
	iii)	Interior point, z_o of a set S of the complex plane.	(2 marks)
		7	
b)	If $z_1 =$	$z_2 - 3i$ and $z_2 = 4 + 6i$, find $\frac{z_2}{z_1}$.	(4marks)
c)	Evaluate the complex function $f(z) = 2z^2 + 4\overline{z} - 4i$ at $z = 2 + 3i$.		(3 marks)
d)) Find an upper bound for the reciprocal of $z^5 - 6z + 2$ if $ z = 2$.		(5 marks)
e)	Write the given complex number $z = -\sqrt{3} + i$ in polar form using		
	i)an argument $\theta \neq Arg(\theta)$		(3 marks)
	ii) $\theta =$	$Arg(\theta)$	(2 marks)
f)	Compu	ite the given complex limit, $\lim_{z \to i} (z^5 - z^2 + z)$.	(3 marks)
g)	Describe all the transformations represented by a complex mapping		
	f(z) =	= 4iz + 2 + 3i.	(4 marks)

QUESTION TWO (20 marks)

- a) State De-Moivre's theorem, hence use it to evaluate $(2 2i)^5$, leaving your answer in the form a + ib; $a, b \in \mathbb{R}$. (7marks)
- b) Describe the set of points z in the complex plain that satisfy |z| = |z 2i|. (5 marks)
- c) Given $z_1 = \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ and $z_2 = \sqrt{3}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$, determine the value of $z_1 z_2$ (3 marks)
- d) State the Cauchy's integral formula and hence evaluate

$$\oint_C \frac{z^2 - 3z + 4i}{z + 2i} dz \; ; \; |z| = 3.$$
(5 marks)

QUESTION THREE (20 marks)

- a) Compute the n^{th} root for the complex number $(-1 \sqrt{3}i)^{\frac{1}{4}}$. Hence sketch the roots w_0, w_1, w_2 and w_3 on an appropriate circle centred at the origin. (6marks)
- b) Use the quadratic formula to solve $z^2 + iz 2 = 0$, hence or otherwise factorize the polynomial. (6marks)
- c) Find the image of the line y = 1 under the complex mapping $w = z^2$ and represent the line and the mapping graphically. (5marks)

d) Find the value of the complex exponential form e^z at the point $z = 4 + \pi i$. (3marks)

QUESTION FOUR (20 marks)

- a) Find solutions of the homogeneous differential equation $y^{II} + 2y^{I} + 2y = 0.$ (5marks)
- b) Find the derivatives of the following complex functions

i)
$$f(z) = 3z^4 - 5z^2 - 7z$$
, where $z \in \mathbb{C}$. (2marks)

ii)
$$f(z) = \frac{2z^3 + 4z}{4z + 3}$$
, where $z \in \mathbb{C}$. (3marks)

c) Find the real and imaginary parts u(x, y) and v(x, y) of the complex function $f(z) = z^2 - 2z + 6.$ (4marks)

d) Use L' Hospital's rule to compute
$$\lim_{z\to 2+i} \frac{z^2-4z+5}{z^3-z-10i}$$
. (6marks)

QUESTION FIVE (20 marks)

- a) The function $f(z) = 3z^2 + 5z 6i$ is analytic for all z. Determine whether the Cauchy-Riemann equations are satisfied or not. (5marks)
- b) Evaluate $\int xy dx + x^2 dy$ over the *C*, where *C* is the graph of $y = x^3$ and $-1 \le x \le 2$. (6marks)
- c) Given the function $u(x, y) = x^3 3xy^2$ i) Verify that u(x, y) is harmonic in an appropriate domain *D*. (2marks) ii) Find v(x, y) the harmonic conjugate of u(x, y). (5marks) iii) Form the corresponding analytic function f(z) = u + iv. (2marks)