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Instructions: 

1. Answer question 1 (Compulsory) and ANY other 2 questions  

2. Candidates are advised not to write on the question paper. 

3. Candidates must hand in their answer booklets to the invigilator while in the 

examination room. 
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QUESTION ONE (30 MARKS) 

a) Outline FOUR advantages of sampling.     (4 Marks) 

b) Let X and Y be random variables with 1X , 4Y , 12 X , 12 Y  and
2

1XY . 

Find the mean and variance of YXZ 1020  .    (5 Marks) 

c) Show that a random sample of size n from an infinite population that is ),( N , has 

mean of sample  
x

which is the population mean and standard error of the sample 

mean 
nx

          (5 Marks) 

d) For a geometric distribution xxp  2)( , ......3,2,1x , prove that Chebyshev’s  inequality 

gives 
2

1}22{ Xp .       (6 Marks) 

e) Let x denote the mean of a random sample of size 100 from a chi-square distribution with 

50 degrees of freedom. Compute an approximate value of )5149(  xp  (3 Marks) 

f) Define the following terms as used in statistics 

i. Population 

ii. Sample 

iii. Sample error 

g) Let x  be the mean of a random sample of size 25 from a distribution that is normally 

distributed as  100,75N . Find  7971  xp     (4 Marks) 

QUESTION TWO (20 MARKS) 

a) Given that X is a continuous random sample, then X is said to have a chi-square 

distribution with probability density function given by  

    
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i. Find the moment generating function of the chi-square distribution. (6 Marks) 

ii. Find the mean and variance of the chi-square distribution.   (4 Marks) 

b) The probability distribution function if a random variable X is given below 

  


 


otherwise

xx
xf

0
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Show that, if k increases    kXp  decreases.    (10 Marks) 
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QUESTION THREE (20 MARKS) 

 Let  1,0~ NX  be independent of another random variable Y which is a chi-square with 

r degrees of freedom. Consider a new variable

r
Y

X
t  , where  X and  Y0 . 

Find the probability distribution of t . 

QUESTION FOUR (20 MARKS) 

 Let nXXX ,......, 21 be random variables such that iX ’s are chi- square with ir degrees of 

freedom where ni .......,3,2,1 . Let each iX  and jX be independent.  

a) Obtain the joint probability distribution function of 1X and 2X  

b) Obtain the  probability distribution function of 

2

2

1

1

r
X

r
X

f   

QUESTION FIVE (20 MARKS) 

 Suppose that X and Y are jointly distributed random variables with probability 

distribution function given by 

     
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Compute the coefficient of correlation between X and Y  


