JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
 UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION ARTS, SPECIAL EDUCATION AND EDUCATION SCIENCE
 RESIT 2
 REGULAR (MAIN)

COURSE CODE: SMA 211
COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY II
EXAM VENUE: STREAM: (B.e.d ARTS, SPECIAL ed. \& SCIENCE)

DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

a) Outline FOUR advantages of sampling.
b) Let X and Y be random variables with $\mu_{X}=1, \mu_{Y}=4, \sigma_{X}^{2}=1, \sigma_{Y}^{2}=1$ and $\rho_{X Y}=1 / 2$. Find the mean and variance of $Z=20 X-10 Y$.
(5 Marks)
c) Show that a random sample of size n from an infinite population that is $N(\mu, \sigma)$, has mean of sample $\mu_{\bar{x}}=\mu$ which is the population mean and standard error of the sample mean $\sigma_{\bar{x}}=\sigma / \sqrt{n}$
d) For a geometric distribution $p(x)=2^{-x}, x=1,2,3 \ldots \ldots$, prove that Chebyshev's inequality gives $p\{|X-2| \leq 2\}>1 / 2$.
e) Let \bar{x} denote the mean of a random sample of size 100 from a chi-square distribution with 50 degrees of freedom. Compute an approximate value of $p(49<x<51)$ (3 Marks)
f) Define the following terms as used in statistics
i. Population
ii. Sample
iii. Sample error
g) Let x be the mean of a random sample of size 25 from a distribution that is normally distributed as $N(75,100)$. Find $p[71<\bar{x}<79]$

QUESTION TWO (20 MARKS)

a) Given that X is a continuous random sample, then X is said to have a chi-square distribution with probability density function given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{\Gamma(n / 2) 2^{n / 2}} x^{n / 2-1} e^{-x / 2} & x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

i. Find the moment generating function of the chi-square distribution.
ii. Find the mean and variance of the chi-square distribution.
b) The probability distribution function if a random variable X is given below

$$
f(x)=\left\{\begin{array}{cc}
2 x & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Show that, if k increases $p(|X-\mu|) \geq k \sigma$ decreases.

QUESTION THREE (20 MARKS)

Let $X \sim N(0,1)$ be independent of another random variable Y which is a chi-square with r degrees of freedom. Consider a new variable $t=\frac{X}{\sqrt{Y / r}}$, where $-\infty<X<\infty$ and $0<Y<\infty$. Find the probability distribution of t.
QUESTION FOUR (20 MARKS)
Let $X_{1}, X_{2}, \ldots \ldots X_{n}$ be random variables such that X_{i} 's are chi- square with r_{i} degrees of freedom where $i=1,2,3 \ldots \ldots, n$. Let each X_{i} and X_{j} be independent.
a) Obtain the joint probability distribution function of X_{1} and X_{2}
b) Obtain the probability distribution function of $f=\frac{X_{1} / r_{1}}{X_{2} / r_{2}}$

QUESTION FIVE (20 MARKS)

Suppose that X and Y are jointly distributed random variables with probability distribution function given by

$$
f(X, Y)=\left\{\begin{array}{cl}
\frac{1}{8}(X+Y) & 0<X<2 \quad 0<Y<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Compute the coefficient of correlation between X and Y

