

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION ARTS, SPECIAL EDUCATION AND EDUCATION SCIENCE

RESIT 2

REGULAR (MAIN)

COURSE CODE: SMA 211

COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY II

EXAM VENUE: STREAM: (B.e.d ARTS, SPECIAL ed. &

SCIENCE)

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

- a) Outline FOUR advantages of sampling. (4 Marks)
- b) Let *X* and *Y* be random variables with $\mu_X = 1$, $\mu_Y = 4$, $\sigma_X^2 = 1$, $\sigma_Y^2 = 1$ and $\rho_{XY} = \frac{1}{2}$. Find the mean and variance of Z = 20X 10Y. (5 Marks)
- c) Show that a random sample of size n from an infinite population that is $N(\mu, \sigma)$, has mean of sample $\mu_{\bar{x}} = \mu$ which is the population mean and standard error of the sample mean $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ (5 Marks)
- d) For a geometric distribution $p(x) = 2^{-x}$, x = 1,2,3..., prove that Chebyshev's inequality gives $p\{|X-2| \le 2\} > \frac{1}{2}$. (6 Marks)
- e) Let \bar{x} denote the mean of a random sample of size 100 from a chi-square distribution with 50 degrees of freedom. Compute an approximate value of p(49 < x < 51) (3 Marks)
- f) Define the following terms as used in statistics
 - i. Population
 - ii. Sample
 - iii. Sample error
- g) Let x be the mean of a random sample of size 25 from a distribution that is normally distributed as N(75,100). Find $p[71 < \overline{x} < 79]$ (4 Marks)

QUESTION TWO (20 MARKS)

a) Given that X is a continuous random sample, then X is said to have a chi-square distribution with probability density function given by

$$f(x) = \begin{cases} \frac{1}{\Gamma(n/2)} 2^{n/2} & x > 0 \\ 0 & otherwise \end{cases}$$

- i. Find the moment generating function of the chi-square distribution. (6 Marks)
- ii. Find the mean and variance of the chi-square distribution. (4 Marks)
- b) The probability distribution function if a random variable X is given below

$$f(x) = \begin{cases} 2x & 0 < x < 1 \\ 0 & otherwise \end{cases}$$

Show that, if k increases $p(|X - \mu|) \ge k\sigma$ decreases. (10 Marks)

QUESTION THREE (20 MARKS)

Let $X \sim N(0,1)$ be independent of another random variable Y which is a chi-square with r degrees of freedom. Consider a new variable $t = \frac{X}{\sqrt{Y/r}}$, where $-\infty < X < \infty$ and $0 < Y < \infty$.

Find the probability distribution of t.

QUESTION FOUR (20 MARKS)

Let X_1, X_2, \dots, X_n be random variables such that X_i 's are chi-square with r_i degrees of freedom where $i = 1, 2, 3, \dots, n$. Let each X_i and X_j be independent.

- a) Obtain the joint probability distribution function of X_1 and X_2
- b) Obtain the probability distribution function of $f = \frac{X_1}{r_1}$ $\frac{X_2}{r_2}$

QUESTION FIVE (20 MARKS)

Suppose that X and Y are jointly distributed random variables with probability distribution function given by

$$f(X,Y) = \begin{cases} \frac{1}{8}(X+Y) & 0 < X < 2 & 0 < Y < 2 \\ 0 & otherwise \end{cases}$$

Compute the coefficient of correlation between X and Y