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SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE 

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF   EDUCATION 
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RESIT 2 
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SCIENCE)  
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Instructions: 

1. Answer question 1 (Compulsory) and ANY other 2 questions  

2. Candidates are advised not to write on the question paper. 

3. Candidates must hand in their answer booklets to the invigilator while in the 

examination room. 
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QUESTION ONE (30 MARKS) 

a) In 20 independent trials, the probability of observing a certain outcome is 0.05 per trial. 

Find the probability of observing this trial outcome at least once.  (3 Marks) 

b) In a telephone sub network, the probability that a telephone is out of order per day is 

0.0003. What is the probability of having 5 failures per day?  (3 Marks) 

c) The weekly demand for bread, in thousands of loaves from a local chain efficiency stores 

is a continuous random variable X having a probability density function given by  
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 Find the mean and variance of X .      (5 Marks) 

d) Show that the covariance of two random variables X and Y with means X and Y

respectively is given by  

YXXY XYE   )(      (4 Marks) 

e) Define the following terms as used in probability distributions.  (6 Marks) 

 Uniform random variable 

 Exponential random variable 

 Gamma random variable 

f) Let X be a random variable with density function 
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 Find the expected value of   34  xxg      (3 Marks) 

g) Compute the mean and variance of the following rectangular distribution  (6 Marks) 

 










otherwise

babxa
abxf

0

1

 

 

QUESTION TWO (20 MARKS) 

a) Suppose that the probability of a successful outcome in an experiment is given as 0.4. If 

15 independent trials of the experiment are made, determine if; 

i.  3Xp  

ii.  96  Xp  

iii.  10Xp  

Given that X is the number of successes.     (10 Marks) 

b) The fraction X of male runners and the fraction Y of female runners who compete in 

marathon races are described by the joint density function ; 
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QUESTION THREE (20 MARKS) 

a) From a well –shuffled pack of 52 cards, 3 cards are taken at random. Find the probability 

of getting;          (10 Marks) 

i. at least 2 red cards . 

ii. at best 2 red cards. 

iii. no red cards. 

b) Given a function of continuous random variable X as follows    xkxxf  1  with range 

space  10::  xXR . Is  xf a density function? If so, find  1AP  where 

 
3

10:1  xXA  and  2AP  where  
2

1:2  xXA    (10 Marks) 

QUESTION FOUR (20 MARKS) 

 Two regular tetrahedral are used in an experiment to obtain pairs of values ),( ii yx . The 

values on the face of the tetrahedral are numbered 1,2,3,4 and ix  is the value on the phase 

looking down on the tetrahedron A, iy on the tetrahedron B or A, the larger of the two. 

Possible pairs ),( ii yx and corresponding probabilities are listed below 

 YX ,  (1,1) (1,2) (1,3) (1,4) (2,2) (2,3) (2,4) (3,3) (3,4) (4,4) 
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Obtain 

i. F(2,3) 

ii.  yfY     y  

iii.  xf x    x   

 

QUESTION FIVE (20 MARKS) 

a) A random variable X has a density function  
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 . Find 

i.  XE  

ii.  Xvar         (10 Marks) 

b) The probability mass function of a geometric distribution is given by  
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 Compute the mean and variance of this geometric distribution.  (10 Marks) 


