JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

FIRST YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF

SMA 3112: MATHEMATICS II

Date: April, 2013 Time: \qquad

INSTRUCTIONS:

1. This examination paper contains five questions. Answer question one, and any other two questions.
2. Start each question on a fresh page.
3. Indicate question number clearly at the top of each page.

QUESTION ONE (30 marks)

a) Find the equation of the straight line through $(-1,-3)$
i. Parallel to line $4 x+3 y-5=0$,
(3 marks)
ii. Perpendicular to line $5 x-2 y-1=0$. (3 marks)
b) Use the following matrices
$A=\left[\begin{array}{lll}0 & 3 & 5 \\ 1 & 2 & 6\end{array}\right], \quad B=\left[\begin{array}{ccc}4 & 1 & 0 \\ -3 & 3 & -2\end{array}\right]$
to evaluate the given expression
$2 A-3 B$ (4 marks)
c) Determine the point of discontinuity (if any) of the function $f(x)$
$f(x)=\frac{x^{2}-5 x+4}{x-4}$
If the continuity is removable, define the function to make it continuous. (5 marks)
d) Find:
i. $\quad \lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$ (3 marks)
ii. $\lim _{x \rightarrow+\infty} \frac{2 x+5}{x^{2}-7 x+3}$ (3 marks)
e) Find the derivative of the function $f(x)=\frac{1+x-4 \sqrt{x}}{x}$. (4 marks)
f) Evaluate the integral $\int x^{3}\left(1+9 x^{4}\right)^{\frac{-3}{2}} d x$ (5 marks)

QUESTION TWO (20 marks)

a) The coordinates of the vertices A, B, C of the triangle $A B C$ are $(-3,7),(2,19),(10,7)$ respectively. Prove that the triangle is isosceles. (6 marks)
b) The points A, B and C have coordinates $(8,1),(4,-2)$ and $(-2,4)$ respectively. Find the coordinates of D, E and F, the mid-points of $B C, C A$ and $A B$ respectively. Find the equations of the lines $A D, B E$, and the coordinates of G, their point intersection. Prove that C, G, F are in a straight line. (14 marks)

QUESTION THREE (20 marks)

a) Evaluate the matrix product:
$\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ 3 & -1 \\ 1 & 0\end{array}\right]$
b) Solve for x :

$$
\left|\begin{array}{lll}
x & 1 & 2 \tag{5marks}\\
1 & x & 3 \\
0 & 1 & 2
\end{array}\right|=-4 x .
$$

c) Solve the system of equations below using Cramer's Rule if it is applicable. If Cramer's rule is not applicable say so:
$\left\{\begin{array}{c}2 x+y-z=3 \\ -x+2 y+4 z=-3 \\ x-2 y-3 z=4\end{array}\right.$
(10 marks)

QUESTION FOUR (20 marks)

a) Evaluate the integral by using a substitution to reduce it to standard form:

$$
\int x^{5} e^{1-x^{6}} d x(5 \text { marks })
$$

b) Find the derivative of y with respect to x :

$$
y=\frac{\ln \sqrt[3]{x^{2}}}{x^{4}}(5 \text { marks })
$$

c) Evaluate the following integral:
$\int_{1}^{2} \frac{x^{2}}{\left(x^{3}+1\right)^{2}} d x$ (5 marks)
d) Differentiate the function and find the slope of the tangent line at the given value of the independent variable:

$$
y=x+\frac{9}{x}, x=-3 .(5 \text { marks })
$$

QUESTION FIVE (20 marks)

a) The population $P(t)$ of a bacterial colony t hours after observation begins is found to be changing at the rate:
$\frac{d P}{d t}=200 e^{0.1 t}+150 e^{-0.03 t}$
If the population was 200,000 bacteria when the observations began, what will the population be 12 hours later? (5 marks)
b) Find the area enclosed between the two curves $y=4-x^{2}$ and $y=x^{2}-2 x$ (7 marks)
c) An efficiency study of the morning shift at a certain factory indicates that an average worker who arrives on the job at $8.00 A . M$. will have produced
$Q(t)=-t^{3}+6 t^{2}+24 t$
units t hours later:
i. Compute the worker's rate of production at 11.00A.M ? (4marks)
ii. At what rate is the worker's rate of production changing with respect to time at 11.00A.M ? (4 marks)

