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Abstract: Low temperature is a common biological abiotic stress in major cotton growing areas. 
Cold stress significantly affects the growth, yield and yield quality of cotton. Therefore, it is im-
portant to develop a more robust and cold stress tolerant cotton germplasms. Climate change and 
erratic climatic condition, plants have evolved various survival mechanisms, one of which induc-
tion of various stress responsive transcriptome factors, such as the C-repeat binding factor 
GthCBF4, which have been found to enhance cold tolerance in various plants. In this study detailed 
evaluation of the cotton C-repeat binding factor has been carried out. A total of29, 28, 25, 21, 30, 26 
and 15 proteins encoded by the C-repeat binding factor were identified in G. herbaceum, G. arbo-
reum, G. thurberi, G. raimondii, G. turneri, G. longicalyx and G. australe, respectively. Phylogeny 
evaluation revealed that the proteins were grouped into seven clades, with clade 1 and 6 being the 
largest. Moreover, majority of the proteins encoded by the genes were predicted to be located 
within.  the nucleus, while some are distributed in other parts of the cell. Based on the transcrip-
tome and RT-qPCR analysis, Gthu17439 (GthCBF4) was highly upregulated and was further vali-
dated through forward genetics. The Gthu17439 (GthCBF4) overexpressed plants showed a signif-
icantly tolerance to cold stress, with higher growth vigour compared to the wild types. The results 
showed that the Gthu17439 (GthCBF4) could be playing a significant role in enhancing cold stress 
tolerance in cotton and can be further exploited in developing a more cold stress tolerance cotton 
germplasm 
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1. Introduction 
Cotton is a thermophilic crop and is more sensitive to low temperatures [1]; China 

being the major cotton growing countries globally, the site specific regions within China, 
such as Xinjiang, , is often affected by low temperature which significantly results in 
negative effects on plant growth and development [2]. Cold stress lead to inhibition of 
seed germination, reduction of plant growth and reproduction, as well as a decrease in 
crop yield and quality [3]. However, many crops, such as rice (Oryza sativa), maize (Zea 
mays), tomato (Solarium lycopersicuni), soybean (Glycine max) and cotton (Gossypium hir-
sutum), do lack the ability to adapt to low temperature environments and can only grow 
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in tropical or subtropical regions [4–6]. In order to deter the emergence of the adverse 
effects, plants have evolved complex mechanisms to resist cold stress. by integrating the 
physiological, biochemical and molecular regulated mechanisms related to stress per-
ception, signal transduction, gene expression and metabolic modifications to prevent cell 
oxidative damage [7]. In order to understand the effect of cold stress on plants, it is im-
portant to distinguish between cold (0-15oC) and freezing/chilling stress (< 0 oC). Cold 
stress leads to metabolic injury, destruction of the stability of protein complexes, inhibi-
tion of the metabolic pathways and various cellular processes in varying degrees, and 
eventually damage to the photosynthetic processes [8–10]. Freezing/chilling temperature 
promotes the ice formation in intercellular spaces of plant tissues [11]. When ice crystals 
are deposited on the cell wall, the extracellular water potential decreases and the cell 
membrane is destroyed, resulting in serious cell dehydration [12]. The most common 
phenomenon to resist the adverse effects of low temperature is adaptation. Many plants 
have increased freezing resistance after a period of low non-freezing temperature, a 
phenomenon known as cold acclimation [13–15]. Cold acclimation is an effective way to 
increase plant freezing resistance after a period of low non-freezing temperature [16]. 
When plants are exposed to chilling conditions, the plants do mobilize the cold-response 
genes (COR), which then activates. 

C-repeat binding factors (CBF), followed by the accumulation of cryoprotectants, 
which results in the acquisition of freezing tolerance [7]. When plants are exposed to 
nonfreezing low temperature, CBF is rapidly induced by low temperature, and then the 
downstream target gene COR is activated [17]. In addition, as the expression of CBF is 
regulated by light quality, biological clock and photoperiod, it is necessary to understand 
the daily and seasonal regulation of CBF [18].  

The C-repeat binding factor/dehydration-responsive element binding factor 1 
(CBF/DREB1) is well-studied as a cold regulatory pathway. It is an adaptive response 
where plants increase freezing tolerance after exposure to low non-freezing temperatures 
[19]. The CBF/DREB protein, a DNA binding protein belonging to AP2/ERF superfamily, 
was first identified in A. thaliana as a LT-induced transcription factor [20]. 
APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is a large class 
of plant-specific transcription factors, including AP2, RAV, ERF and CBF (C-repeat 
binding factor) [21,22]. The expression of CBF gene was very low at room temperature, 
but wound increase rapidly within 15 minutes after plants were exposed to low temper-
ature stimulation [4,16]. During cold acclimation, C-repeat binding factor (CBF) activated 
cold response (COR) gene and then accumulated cryoprotectants, which resulted in cold 
tolerance [7]. The CBF / DREB gene is activated by CBF expression (ICE) inducer through 
specific binding of cis elements to MYC in the promoter [16,20,23]. The cold reaction 
pathway of ICE-CBF-COR has been proved to be the effective defense mechanism to cold 
stress [4].  

Six CBF family members have been identified in A. thaliana, CBF1/DREB1C, 
CBF2/DREB1B, and CBF3/DREB1A are induced by cold stress, while CBF4/DREB1D, 
DREB1E/DDF2, and DREB1F/DDF1 are induced by osmotic stresses [24]. Moreover, the 
CBF1, CBF2 and CBF3 are arranged in tandem in an 8.7-kb region of the short arm of 
chromosome 4 in Arabidopsis [20]. All the three CBF Transcription factors perhaps acts 
as the activator of the expression of downstream CORS genes, but with different func-
tions [25]. The CBF1/2/3 triple mutant Arabidopsis seedlings obtained by CRISPR/Cas9 
technology are more sensitive to low temperature than the single mutant CBF2 and CBF3, 
as well as the double mutant CBF1/3 [26], which is an indication that CBF genes play 
significant role enhancing cold stress tolerance in plants. The CBF4 is a unique family 
member which plays an important role on drought tolerance in A. thaliana [22], but has 
been closely related to cold stress tolerance in grape [25]. In addition, the expression of 
CBF4 have demonstrated significantly different among five different poplar species un-
der cold stress, indicating CBF4 transcription factors could be responsible for the regu-
latory role in cold stress response [27]. 
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The CBF Transcription factors have been widely identified and isolated from rice, 
tomato, Brassica napus, wheat, barley and maize, which show that the CBF family is large 
in scale and complex in structure [2,28]. It has been reported that AtCBF gene was over-
expressed in Brassica napus transgenic plants, and improved the cold tolerance [2,29]. The 
combination of AtDREB1A gene with stress-induced RD29A promoter improved the 
tolerance in transgenic tobacco to drought and low temperature stress [30,31]. Through 
phylogenetic analysis of Arabidopsis CBFS and its orthologous genes in other plants, it 
was found that CBFS were highly conservative in phylogeny [16]. 

As an important oil and fiber crop, cotton has been planted in more than 70 coun-
tries and plays an important role in the global economy. However, cotton yield is often 
adversely affected by biotic and abiotic stresses. Therefore, studying the molecular ad-
aptation mechanism of cotton stress resistance, improving the stress resistance of cotton 
is of great significance for improving cotton yield. 21 CBF genes have been cloned from 
G. hirsutum; they can be divided into GhCBF Ⅰ, GhCBF Ⅱ, GhCBF Ⅲ and GhCBF Ⅳ 
[24]. It provides useful clues for understanding the cold tolerance mechanism in cotton. 
However, due to the limited genome sequence, the expression profile of CBF family and 
its phylogenetic relationship with other plant CBF members are still unclear. In order to 
better understand the function and evolutionary relationship of CBF gene family in cot-
ton, we analyzed the structural variation and evolution pattern of CBF family based on 
the genome-wide data of several cotton species, and explored the molecular mechanism 
of cold adaptation formation in G. thurberi. This study provides some ideas and reference 
for further research on the molecular mechanism of CBF gene regulating cold adaptation 
in cotton. The study of digging cotton endogenous genes from wild cotton as 
cold-tolerance-related genes and transferring them to tetraploid cultivars is beneficial to 
improve or enhance the genetic characteristics of existing varieties. 

2. Results 
2.1. Identification of CBF family genes in the cotton genome 

The availability of the whole sequences for the seven cotton species enabled us to 
identify the CBF proteins harbored in their genome. The Pfam domain PF00847 was used 
as the query to obtain the CBF proteins, and finally get 29 members of G. herbaceum, 28 
members of G. arboreum, 25 members of G. thurberi, 21 members of G. raimondii, 30 
members of G. turneri, G. longicalyx has 26 members and G. australe has 15 members. 
Three representative cotton species from these seven species were chosen for further de-
tailed analysis: G. herbaceum, G. thurberi and G. australe. The CBF CDS length in G. her-
baceum range from 306 bp to1, 230 bp. In G. australe，it is 429 bp to 1,077 bp. In the 
physiochemical properties analysis of the CBF proteins, the results show a great differ-
ence. For the CBF proteins obtained from the G. herbaceum, their molecular weights 
ranged from 11,241.88 Da to 39,020.73 Da; isoelectric value ranged from 5.26 to 10.27. In 
G. thurberi molecular weights ranged from 16,179.23 Da to 45,591.53 Da, the pI ranged 
from 5.11 to 10.83. Similar in G. australe, it ranged from 15,676.36 Da to 40,867.96 Da. The 
CBF genes differed substantially by the encoded protein size and its biophysical proper-
ties (Table S1). 

2.2. Phylogenetic analysis of cotton CBF gene family 
In order to determine the phylogenetic relationship of CBF proteins, we constructed 

a phylogenetic tree by MEGA7.0, using the Neighbor-joining (NJ) method with minimal 
evolution and maximum parsimony. The CBF proteins were clustered into 7 clades and 
designated as clade 1 to 7 (Fig. 1). Clade 1 contains 61 CBF protein sequences at most, 
while clade 3 contains only 7 CBF amino acid sequences. Consistent with previous clas-
sification, all of the Arabidopsis CBFs were distributed among the clade 6 [2,22,29]. Ex-
cept G. australe did not appear in clade 3, the other cotton species were distributed in all 7 
groups.  
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Fig. 1. Phylogenetic tree analysis of CBL transcription factors. Protein sequences alignment was done by ClustalX, the 
phylogenetic tree built by MEG7.0 software using 1000 bootstrap replication via Neighbor-joining approach. Different 
color was used to differentiate the homologous clusters. 
 

2.3 Chromosomal mapping, Gene structure and C-terminal conserved motifs analysis 
All the genes located on various chromosomes in the three cotton genomes, A, D 

and AD, and were named according to their position on the chromosome. In the A ge-
nome, G. herbaceum the CBF proteins were detected on 12 chromosomes, only Chr01 
without CBF members. The most gene loci were detected in chromosome Chr05 and 
Chr07 (Fig. 2A). In the D genome, chromosome Gthu_1, Gthu_8 and Gthu_9 harbored no 
genes, Gthu_5, Gthu_7, and Gthu_12 had more gene loci (Fig 2B). Finally, in G. australe of 
the G genome, no CBF genes were found in chromosome G6, G9, G11 and G12, but the 
highest gene loci was only observed in chromosome G7 with 5 genes, respectively (Fig. 
2C).  
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Fig 2: Chromosomal positions of the CBF genes. (A). Chromosomes of G. herbaceum, (B). Chromosomes of G. thurberi 
(C). Chromosomes of G. australe 
 

We employed MEME to detect conserved motifs in the CBF family. There are 10 
conserved motifs distributed in each CBF family (Fig. 3). Almost all CBF proteins have 
the same 3 motifs, motifs 1, 2, and 4. Analyzing the arrangement of exons and introns can 
provide important insights into the evolution of gene families [9]. To study the ex-
on/intron structure of CBF gene, the CDS and the genome sequence were compared. The 
results showed that most of G. herbaceum contains one exon, G. australe only has one exon, 
and G. thurberi either Contains 2 or more exons (Fig. 4A-D). Compared with phylogenetic 
analysis, most members in the same group have similar exon-intron structure and gene 
length.  

In addition, through the online software Wolfsport (https://wolfpsort.hgc.jp/) we 
tried to determine the subcellular localization of the proteins encoded by the CBF genes. 
Among the three cotton species, the highest proportion of CBF protein is embedded in 
the nucleus The locate signals of all the CBF members in G. herbaceum and G. australe are 
predicted in the nucleus but in G. thurberi, only some are in the nucleus Except located in 
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the nucleus, the distribution of other CBF family members is very different. The chloro-
plast, mitochondria, plasma membrane, vacuole membrane and chloroplast also have the 
locate signals. (Table S2) 

To study the exon/intron structure of CBF gene, the CDS and the genome sequence 
were compared. The results showed that most of G. herbaceum contains one exon, G. aus-
trale only has one exon, and G. thurberi either Contains 2 or more exons (Fig. 4A-D). 
Compared with phylogenetic analysis, most members in the same group have similar 
exon-intron structure and gene length.  

 
Fig. 3. Conserved domain and gene structure analysis of CBF family protein sequences from the evolutionary level in 
cotton. 
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Fig. 4. Physiochemical properties and cis-regulatory element analysis of the proteins encoded by the cotton CBF genes. 
(A-D). GC content, exon number, mean exon length and mean intron length. (E). Cis-regulatory elements obtained for 
the various proteins encoded by the IQD genes in the G. herbaceum, G. thurberi and G. australe. 

 
2.4 RNA-seq analysis and RT-qPCR validation of the CBF genes under cold stress conditions 

G. thurberi transcriptome data was used to analyze the expression patterns of 24 CBF 
genes under cold stress (Fig. 5A). Among them, only 17 genes are differentially expressed 
under cold stress. According to G. thurberi transcriptome data, 12 differentially expressed 
CBF genes were selected, and 15 and 13 genes were selected from the two cotton varieties 
G. herbaceum and G. australe. RT-qPCR was detected to analyze the expression pattern; 
most genes are up-regulated in the three cotton species (Fig. 5B）. Among the 12 genes in 
G. thurberi, there are 10 genes whose expression levels are up-regulated, while only 2 
genes are down-regulated, but the trend is generally consistent with the transcriptome 
data. In G. herbaceum, 9 genes were up-regulated, and 6 were down-regulated. In G. aus-
trale, 8 were up-regulated and 5 were down-regulated. Integrate the transcriptome data 
and RT-qPCR result; we selected a highly expressed gene GthCBF12.5 (GthCBF4) for 
further functional verification.  
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Fig. 5. RT -qPCR validations of transcript levels evaluated by RNA-Seq in G. thurberi under cold stress. (A) Heat map 
depicting log2 (fold change) of transcription factor. (B) Heat map log2 (fold change) of the CBF genes expression under 
cold stress condition. The samples were collected at 0h, 0.5h, 3h, 6h, 12h and 24 h for leaf tissues. Red: upregulated 
genes; blue: downregulated; Black: none expressed genes. 
 

2.5 Analysis of subcellular localization results 
The results showed that the control group showed green fluorescence signals on 

both the nucleus and cell membrane, while the fusion protein pCAM-
BIA2300-eGFP-Flag-GthCBF4 only had green fluorescence signals in the nucleus (Fig. 6), 
indicating that the protein encoded by the gene was localized in the nucleus. 

 
Fig. 6. Subcellular localization of pCAMBIA2300-eGFP-Flag-GthCBF4 fusion protein 
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2.6. Phenotype identification and cell damage identification of overexpressed Arabidopsis under 
low temperature.  

Two higher expression lines OE-1 and OE-3 were selected for phenotypic identifi-
cation (Fig. 7A). Two-week-old transgenic and wild-type Arabidopsis plants were se-
lected for cold tolerance test. As Fig.7B shown, two overexpression lines returned to 
green under the restoration culture, with new leaves growing, while most of the 
wild-type had withered and turned yellow. the survival rates of the two transgenic 
overexpression lines reached 60% and 63%, while the wild-type was only 8% (Fig. 7C). 
The expression analysis of GthCBF4 was detected by real-time quantitative RT-qPCR af-
ter low temperature (-15 ℃) treatment for 0, 1, 3 hours (Fig. 7D). The gene GthCBF4 ex-
pression was significantly up-regulated in the overexpression lines, and the expression 
increased with the extension of treatment time. Trypan blue staining method was de-
tected to reflect the cell damage under cold stress (Fig. 7E). Under normal conditions, the 
stained blue area on the leaves of the transgenic overexpression plants and wild-type 
plants was very small. While under cold treatment, the blue areas on transgenic leaves 
were significantly smaller than the wild-type, the color depth was also lighter. 

DAB staining method was detected to reflect the accumulation of H2O2 in Ara-
bidopsis leaves. the accumulation of H2O2 in the transgenic overexpression leaves and the 
wild-type were very low under normal conditions, and the production of brown matter 
was hardly seen. But after cold treatment, the brown area on the transgenic Arabidopsis 
leaves was obviously larger than the wild type, and the color depth was also deeper (Fig. 
7E).  

 
Fig. 7. Phenotype identification and cell damage identification of overexpressed Arabidopsis under low temperature. 
(A) Quantitative expression level of GthCBF4 gene in transgenic Arabidopsis. (B) -15℃ treatment restores the growth 
status of wild-type and transgenic Arabidopsis thaliana after culture. (C) Freezing survival assay. (D) log10 (fold 
change) of the GthCBF4 genes expression in -15℃ treatment. (E) Trypan blue staining and DAB staining.  
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2.7 Overexpression plants and evaluation of physio-morphological traits under low temperature 
environment 

As Fig. 8 A and B showed that no wild type lines could germinate after treatment, 
while the germination rates of the two overexpression lines are 16% and 7%, respectively. 
On the other hand, the root length of the two overexpression lines is significantly longer 
than the WT (Fig. 8C, D). We further evaluated known stress responsive genes such as 
the COR15A、 RD29A、 KIN1 and COR47 [26]. After treatment wild type and CBF tri-
ple mutants with low-temperature (-15°C) for 0h, 1h and 3h, the expression of COR genes 
was assessed by real-time quantitative RT-qPCR. All the four abiotic stress responsive 
genes were significantly upregulated in the overexpression plants under 
low-temperature (-15°C) stress conditions (Fig. 8E). 

 
Fig. 8. Determination of the growth phenotypes and regulatory gene expression of transgenic Arabidopsis under cold 
stress conditions. (A-B) Germination rate determination. (C-D) Root length determination. (E) The expression levels of 
abiotic stress responsive gene. 

3. Discussion 
Cotton is an important economic crop, but the production of cotton is affected by 

various abiotic stress factors, especially the yield under drought, salinity and cold stress. 
Although abiotic stress is a major challenge in cotton growth, there is no detailed study 
on CBF gene in cotton [32]. In previous studies, CBF family have been identified in cotton 
(Gossypium hirsutum) [24], wheat [33], lettuce [34], Brassica napus [35], Barley [36] and 
soybean [37], but there is few study in diploid cotton. In this work, genome wide identi-
fication, characterization and functional analysis of the proteins encoded by the cotton 
CBF genes was done, identified in the three cotton species, with 29, 25 and 15 CBF pro-
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teins in G. herbaceum, G. thurberi and G. australe, respectively. The results obtained 
showed that the proteins encoded by the CBF genes in cotton were higher compared to 
other plants such as lettuce with 14, brassica napus with 10 and soybean with 14 CBF 
genes, but less than hexaploid wheat with 65 CBF genes and barley with 20 CBF genes. 
Studies have found that Arabidopsis CBF family members have an AP2 domain, and 
each has a conserved amino acid sequence upstream and downstream of AP2. The up-
stream of AP2 is PKK/PKKPAGR (RAGRxxKFx ETRHP) and the downstream is DSAWR 
[38]. If the PKK/PKKPAGR mutation can inhibit the binding ability of CBF to the COR 
promoter of its downstream genes, thereby weakening the level of CBF regulation, this 
sequence is necessary for CBF to perform its transcription factor function. cotton genome 
contains a large and complex CBF subfamily, they contain conserved AP2/EREBP do-
mains and CBF characteristics, indicating that cotton CBFs have similar function with 
other CBFs in dicotyledons [25]. Phylogenetic analysis showed that the CBF family was 
divided into seven groups, among these genes CBF1, CBF2 and CBF3 are all induced by 
cold stress in Arabidopsis thaliana. Therefore, we speculate that CBF genes may also re-
spond to abiotic stress, especially to cold. Further analysis showed that the isolated CBF 
gene was highly expressed under cold stress, consistent with previous research results. 

In plants, the transcriptional regulation of osmotic stress response mainly depends 
on two main cis-regulatory elements, which are related to stress response genes ABREs 
and dehydration response elements (DREs). DREs are mainly involved in 
ABA-independent pathways, and ABRE is responsible for detecting ABA-mediated os-
motic stress signals. In our work, we found that the CBF genes in the three cotton species 
are rich in stress response genes (ABRE), dehydration response element (DRE) and low 
temperature response element (LTR). It is speculated that exogenous environmental 
stress can induce the expression of CBF gene through its response to cis-acting elements, 
and further improve the resistance of plants to environmental stress. The results of sub-
cellular localization confirmed that the fusion gene pCAMBIA2300-eGFP-Flag-GthCBF4 
was expressed in the nucleus of tobacco leaf epidermal cells, and the GthCBF4 protein 
was localized in the nucleus, which confirmed previous studies and was consistent with 
the results of bioinformatics analysis. 

Overexpression of Arabidopsis CBF gene in other plant species or overexpression of 
CBF of other species in Arabidopsis has revealed the potential of the CBF genes in en-
hancing frost resistance [39]. Moreover, it shows CBF gene plays an important role in 
plant cold tolerance. Recently, the expression of CBF1 and CBF3 were down regulated 
with the RNAi and antisense technique, resulting in a 25-50% reduction in cold-treated 
plants [24]. In this study, the GthCBF4 was strongly up-regulated in cotton seedlings 
under low temperature treatment. The survival rate of GthCBF4 transgenic Arabidopsis 
thaliana plants was significantly improved after freezing treatment. From the trypan blue 
staining and DAB staining, it can be seen that the staining of overexpression plants 
should be lighter; indicating that overexpression of the GthCBF4 gene can reduce the 
damage to plants caused by freezing treatment. It strongly proves GthCBF4 is the key 
gene related to cold stress. According to the measurement results of the germination rate 
and root elongation , it can be seen that under the same cold treatment, the two overex-
pression lines and the wild type are significantly different, which further proves that the 
gene GthCBF4 can enhance the ability to resist cold damage. In generally, the expression 
level of these four COR genes is correlated with the freezing tolerance level. Proof of 
previous research COR15A, which encodes a chloroplast-targeted polypeptide, 
strengthens the cold resistance of chloroplasts [40]. Previous studies have confirmed that 
the CBF gene can induce the expression of COR47, RD29A and KIN1 genes to improve the 
cold tolerance of plants [41]. It can be seen that the expression levels of stress response 
genes in the two overexpression lines are significantly higher than the wild type. And 
with the extension of the freezing treatment time, the gene expression level is also in-
creasing. The up-regulation of the stress responsive genes further confirmed that the 
overexpression plants ability to tolerate the effects of cold was significantly strength. In 
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the past two decades, the transcriptional network of CBF signaling pathway has been 
extensively studied. Although many COR genes have been identified in genome-wide 
expression profiles, only about 10-25% of them are regulated by CBF, which means that 
more early cold regulated transcription factors are involved in improving cold tolerance. 
More research is needed to identify more transcription regulators and explore their po-
tential relationships to increase our understanding of cold related transcription networks. 

4. Materials and Methods 
4.1 Identification of CBF family genes in the cotton genome 

Wild diploid cotton species data was downloaded from CottonGen 
(https://www.cottongen.org/) to construct a local BLAST database. The Arabidopsis CBF 
protein sequences were used as probes to compare with the wild diploid cotton. The 
E-value threshold for BLASTP was set at 1e−10 to obtain the final dataset of CBF proteins. 
Then, the Pfam (http://pfam.sanger.ac.uk/search) and SMART (http://smart.embl- hei-
delberg.de/) databases were detected to confirm each predicted CBF protein sequence 
[42]. Redundant sequences and incomplete sequences were removed. The sequences of 
10 Gossypioides kirkii and 9 Theobroma cacao CBF proteins were obtained from the Cot-
tonGen (https://www.cottongen.org/) databases, respectively. In addition, physico-
chemical parameters including the molecular weight (MW) and isoelectric point (pI) of 
each gene product were calculated using compute the pI/Mw tool from ExPASy 
(http://www. expasy.org/tools/). 
4.2 Sequence alignment and phylogenetic analysis of cotton CBF gene family 

An alignment of multiple CBF protein sequences from A. thaliana, Gossypioides kirkii 
and Theobroma cacao was generated using the ClustalW program. A neighbor-joining 
analysis of the generated alignment was performed using the unweighted pair-group 
method with arithmetic mean algorithm to construct an unrooted phylogenetic tree. 
Bootstrap value was 1000, and other parameters were used by default value. The tree was 
visualized with MEGA 7.0 software [43].  
4.3 Gene structure and C-terminal conserved motifs analysis 

Structural information for the CBF genes includes chromosomal location and gene 
length. Exons and introns were predicted by comparing the coding sequences with ge-
nomic sequences. The conserved motif analysis of CBF protein sequence was predicted 
by MEME online software. Use the CDD (https://www.ncbi.nlm.nih. gov/cdd/) database 
to search for the conserved domain information of CBF, and use the TBtools mapping 
tool to draw the conserved domains [44]. 
4.4 Retrieval and analysis of promoter sequences 

The 2000 bp sequence upstream of ATG were extracted the transcription start site of 
the CBF gene sequence, and submit the obtained sequence to the PlantCARE website 
(http://www.dna.affrc.go.jp/PLACE/signalscan.html). Identification of possible cis-acting 
elements in the promoter region is used to identify putative cis-regulatory elements in 
the promoter sequence [45]. In addition, we carried out the subcellular localization pre-
diction of all the CBF proteins by an online tool WoLFPSORT (http://www.genscript. 
com/wolf-psort.html) [46]. 
4.5 RNA extraction and qRT-PCR analysis 

The total RNA was extracted using EASYspin plus plant RNA kit (Aidlab, Biotech, 
Beijing, China), following the manufacturer's instructions. The Nanodrop 
1000spectrophotometer was used to determine the quantity and quality of the RNA 
samples. The primers used for qRT-PCR were designed using primer premier 5 software 
for all genes using Primer Premier 5 Software (Table S3). The cotton GhActin gene, for-
ward primer sequence 5’ATCCTCCGTCTTGACCTTG3’ and reverse primer sequence 
5’TGTCCGTCAGGCAACTCAT3’), was used as a reference gene for the analysis. Re-
al-time PCR reactions were carried out in a final volume of 25 μl, using a SYBR Green 
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master mix and an ABI7500 thermal cycler (Applied Biosystems, Foster City, CA, U.S.A.), 
following manufacturer’s instructions. The analysis of each sample was done; three 
technical replicates and biological replicates of each sample were taken for the analysis. 
Each sample was analyzed in triplicate. Three biological replications of the experiment 
were carried out. 
4.5.1 Plant material 

The seeds of G. herbaceum, G. thurberi and G. austral (Depilation and cut outing seed 
shell as pretreat) germinated in sand at 25°C for 4 days. Then seedlings were transferred 
to the hydroponic facility equipped with Hoagland nutrient solution [47]. The green-
house conditions were 28°C during the day/25°C at night, the photoperiod was 16 hours, 
and the relative humidity was 60-70%. In the three-leaf stage, cotton seedlings were kept 
at 4°C under normal light, and then the leaves were harvested under cold treatments of 0, 
0.5, 3, 6, 12 and 24 h. Each treatment was repeated three times. The leaf samples were 
immediately collected in liquid nitrogen, frozen and stored at -80°C until RNA extrac-
tion. 
4.5.2 GthCBF4 subcellular localization analysis 

To explore the subcellular localization of the GthCBF4 gene, a pCAM-
BIA2300-eGFP-Flag-GthCBF4 fusion vector of CBF and GFP was constructed and tran-
siently expressed in the epidermal cells of tobacco leaves, which was driven by the 35s 
promoter and transformed Agrobacterium LBA4404 competent cells. In addition, Agro-
bacterium competent cells expressing only the GFP gene were used as a negative control. 
Four-week-old tobaccos cotyledon flat leaves were selected for infusion, and cultivated in 
dark for 24h-36h after infiltration, and fluorescence observation was performed under a 
laser confocal microscope. 
4.6 Functional verification of GthCBF4 in Arabidopsis Screening of Transgenic Arabidopsis 

To explore the function of GthCBF4 gene，this study constructed a pBI121-GthCBF4 
recombinant vector and transformed into the promoter cells of A. tumefaciens GV3101 by 
adopting a freeze-thaw method [48,49]. The wild-type Arabidopsis thaliana was soaked 
by the dipping method，and used 50 mg/mL kanamycin for positive selection until the 
T3 generation. In the T2 generation seedlings, the expression lines of gene GthCBF4 were 
screened by RT-qPCR, and two high-expressing transgenic lines were obtained.  
4.7 Phenotypic identification, physiological and biochemical parameters of WT and overexpressed 
plants under low temperature stress 

The transgenic and wild-type Arabidopsis thaliana grown in plastic bowls for two 
weeks and their growth is basically the same are selected for treatment. The Arabidopsis 
thaliana was placed in an environment of -15°C for 3 hours. After the treatment, the 
treated plants were moved to a 4°C light incubator to thaw for 4 hours, and finally they 
were cultivated under normal light conditions at 23°C. After 7 days, take pictures and 
count the survival rate of the plants. For each tissue, at least three independent biological 
replicates were carried out. The germination rate and root length was determined under 
cold stress; a t-test was used to verify the significance of the difference in root length 
between the mutant and the wild types. The trypan blue staining method was adopted to 
reflect the cell damage of transgenic Arabidopsis under cold stress. Moreover, the DAB 
staining was applied to reflect the accumulation of peroxidase in transgenic Arabidopsis 
under cold stress. DAB staining was performed using DAB chromogenic kit (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China). 

5. Conclusions 
In conclusion, through the family analysis of diploid wild cotton CBF, we deter-

mined the distribution of CBF proteins with 29 in G. herbaceum, 25 in G. thurberi and 15 in 
G. australe. According to the results of RNA-seq and RT-QPCR, a highly up-regulated 
gene GthCBF4 under cold stress was selected. Combined with the functional verification 
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test of overexpression of Arabidopsis thaliana, it is proved that GthCBF4 plays an important 
role in improving the cold resistance of G. thurberi. This result provides a solid founda-
tion for further research on the molecular function of GthCBF4 protein in cotton, and 
provides ideas for further improving the role of CBF gene in the cold stress regulatory 
network.  

Supplementary Materials: Table S1. Physiochemical properties of the CBL genes. Physiochemical 
properties and cis-regulatory element analysis of the proteins encoded by the cotton CBF genes. 
(A-D). GC content, exon number, mean exon length and mean intron length. (E). Cis-regulatory 
elements obtained for the various proteins encoded by the IQD genes in the G. herbaceum, G. thur-
beri and G. australe.; Table S2. Subcellular localization of the proteins encoded by the CBL genes; 
Table S3: List of primers for RT-qPCR analysis 
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