JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE

AND TECHNOLOGY UNIVERSITY EXAMINATION 2012/2013

$1^{\text {ST }}$ YEAR $2^{\text {ND }}$ SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS WITH IT

(SCHOOL BASED)

COURSE CODE: SMA 102
TITLE: CALCULUS I
DATE: 1/5/2013
TIME: 3.30-5.30PM
DURATION: 2 HOURS

INSTRUCTIONS

1. This paper contains FIVE (5) questions
2. Answer question 1 (Compulsory) and ANY other 2 Questions
3. Write all answers in the booklet provided

QUESTIONS 1: [30 MARKS](COMPULSORY)

(a) Evaluate the limits of the following:
(i) $\begin{aligned} & \text { Limit } \\ & x \rightarrow-3\end{aligned} \quad \frac{x^{2}+x-6}{x+3}$
(ii)

$$
\operatorname{Limit}_{x \rightarrow 0} \frac{(x+1)^{1 / 2}-1}{x}
$$

(b) (i) Define the term continuity of a function $f(x)$ at the point $x=a$
(ii)Discuss continuity of the function $f(x)$ at the given intervals when

$$
f(x)= \begin{cases}5-x, & -1 \leq x \leq 2 \\ x^{2}-1, & 2<x \leq 3\end{cases}
$$

(c) Find the derivatives of the given functions below from first principles.
(i) $f(x)=x^{2}+2 x$
(ii) $y=\operatorname{Sin} x$
(d) Determine the equation of the tangent to the curve $y=x^{3}-2 x^{2}-2 x$ at the point $(3,0)$.
(3 marks)
(e) Differentiate the function $y=\left(3 x-2 x^{2}+x^{3}\right)^{6}$
(6marks)

QUESTION 2: [20 MARKS]

(a) Given the function defined as $x y+x-2 y=1$, find its derivative. (5 marks)
(b) Differentiate the following functions with respect to x;
(i) $y=\cos x(1-\sin x)$.
(ii) $y=\ln \frac{\left(2 x^{2}-x+2\right)}{\left(x^{2}-x\right)}$
(iii) $y=e^{-\left(x^{2}+1\right)}$
(c) Show that the derivative of $\sin ^{-1} x$ is $\frac{1}{\sqrt{1-x^{2}}}$

QUESTION 3 :[20 MARKS]

(a) Consider the curve $f(x)=5+24 x-9 x^{2}-2 x^{3}$
(i)Find the y-intercept
(ii) Determine $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(2 marks)
(iii)Find the stationary points of the curve, hence distinguish between them.(5 marks)
(b) Given the equation $x^{3}+2 x y-y^{2}+x=2$,

Find
(i) the slope of the curve at $(-4,1)$ and (3 marks)
(ii) the equation of the normal line to the curve at $(-4,1)$. (2 marks)
(c) A curve is defined parametrically by $x=2 \cos \theta$ and $y=2 \sin \theta$, find the slope of the curve when $\theta=\frac{\pi}{3}$.

QUESTION 4: [20 MARKS)

(a) (i) Evaluate $\int \frac{x^{2}+x+1}{\sqrt{x}} d x$ (4 marks)

$$
\text { (ii)Evaluate } \int \operatorname{Sin} \frac{1}{2} x d x \text {. }
$$

(b) (i) Show that

$$
\frac{d}{d x}\left(\frac{1}{2} x-\frac{1}{4} \operatorname{Sin} 2 x\right)=\operatorname{Sin}^{2} x .
$$

(ii)Differentiate the function $\frac{x}{\sqrt{\left(1+x^{2}\right)}}$ with respect to x
(c) A container in the shape of a right circular cone of height 10 cm and base radius of 1 cm is used in catching the drop from a tap leaking at the rate of $0.1 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate at which the surface area of the water is increasing when the water is halfway the cone. (6 marks)

QUESTION 5:[20 MARKS]

(a) (i) Given that $\frac{d A}{d x}=\frac{(3 x+1)\left(x^{2}-1\right)}{x^{5}}$; find A in terms of x. What is the value of A when $x=2$, if $A=0$ when $x=1$. (5 marks)
(ii) A curve which passes through the point $(2,0)$ has a gradient function $\frac{3 x^{2}-1}{x^{2}}$.. Find its equation. (3 marks)
(b) A two percent error is made in measuring the radius of a sphere. Find the percentage error in the surface area.
(c) A particle moves along a straight line $O A$ with a velocity of $(6-2 t) m / s$. When $t=1$, the particle is at O .
(i) Find an expression for its distance from 0 in terms of t. (3 marks)
(ii) Find the time at which it is momentarily at rest and hence calculate the actual distance through which it moves during the same time interval.
(5 marks)

END

