COURSE TITLE: LINEAR ALGEBRA II COURSE CODE: SMA 201; TIME: 2 HOURS KOSELE LC; DECEMBER 2012 Answer question ONE and any other TWO questions.

QUESTION 1

(a) Determine whether A_1 , A_2 , and A_3 are linearly dependent or independent if; $A_1 = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 1 & -1 \end{bmatrix}$, $A_2 = \begin{bmatrix} -1 & 1 & 4 \\ 2 & 3 & 0 \end{bmatrix}$ and $A_3 = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix}$. [5mks]

(b) Show that $v = \{1\}$ is not a vector space.

[2mks]

(c) Find a linear transformation from \mathbb{R}^2 into the plane

$$w = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x - y + 3z = 0 \right\}. \text{ Hence find } T = \begin{pmatrix} 5 \\ -7 \end{pmatrix} \text{ given that}$$
$$w_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \text{ and } w_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}. \qquad [8mks]$$
$$(d) \text{ In } \mathbb{R}^3 \text{ show that } \begin{pmatrix} -7 \\ 7 \\ 7 \end{pmatrix} \text{ is a linear combination of } \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} \text{ and}$$
$$\begin{pmatrix} 5 \end{pmatrix}$$

$$\begin{pmatrix} -3 \\ 1 \end{pmatrix}.$$
(e) Let $T: V \to W$ be a linear transformation.
Prove that $T(u - v) = Tu - Tv$
for all vectors $u, v \in V$. [3mks]

(f) If
$$\pi = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x - y + 3z = 0 \right\}$$
 prove that the vectors in π have the
form $\begin{pmatrix} x \\ 2x + 3z \\ z \end{pmatrix}$ hence a find the basis for the set of vectors lying on the
plane. [6mks]
QUESTION 2
(a) Determine whether the three vectors in \mathbb{R}^3 , $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$ and
 $\begin{pmatrix} 0 \\ 1 \\ 7 \end{pmatrix}$ are linearly dependent or independent. [10mks]
(b) Find a basis for the solution space of the homogenous systems given below

$$x + 2y - z = 0$$
$$2x - y + 3z = 0$$

Hence find the dimension of the solution space.

QUESTION 3

(a) Determine whether the polynomials

x - 2x²; x² - 4x and -7x + 8x² are linearly dependent or independent, hence solve the homogenous systems.
(b) If v = (x, y, z) ∈ H and v₁ = (2, -1, 4); v₂ = (4, 1, 6) prove that

H = span{v₁, v₂} = {v : v = a₁(2, -1, 4)+a₂(4, 1, 6)}. [10mks]

[10mks]

QUESTION 4

tion.

(a) Consider the set of vectors
$$w = \{(2, 2, 4); (0, 4, 10); (3, 1, 1)\}$$
 of \mathbb{R}^3 ,
determine whether or not w is a linear independent set of vectors. [10mks]
(b) Let T be a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 and suppose that
 $T\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 2\\3 \end{pmatrix}; T\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} -1\\4 \end{pmatrix}$
and $T\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 5\\-3 \end{pmatrix}$ compute $T\begin{pmatrix} 3\\-4\\5 \end{pmatrix}$. [6mks]
(c) Show that in $M_{23}; \begin{pmatrix} -3 & 2 & 8\\-1 & 9 & 3 \end{pmatrix}$ is a linear combination of $\begin{pmatrix} -1 & 0 & 4\\1 & 1 & 5 \end{pmatrix}$
and $\begin{pmatrix} 0&1&-2\\-2&3&-6 \end{pmatrix}$. [10mks]
QUESTION 5
(a) Determine the values of x and y that will make \mathbf{u} and \mathbf{v} equal
if $\mathbf{u} = (x+1, 2, y-4, 5)$ and $\mathbf{v} = (4, 2, 0, -5)$ [2mks]
(b) The matrix M of a linear transformation T from $\mathbb{R}^3 \to \mathbb{R}^2$ is defined
by, $\begin{pmatrix} 1&-1&3\\2&0&4\\-1&-3&1 \end{pmatrix}$
Determine the Kernel of T. [12mks]
(c) Let M be $m \times n$ matrix and consider the mapping $T = \mathbb{R}^n \to \mathbb{R}^m$ defined
by $T(x) = M(x)$ for every n -vectors x . Show that T is a linear transforma-

[6mks]

4