COURSE TITLE: LINEAR ALGEBRA II
COURSE CODE: SMA 201; TIME: 2 HOURS
KOSELE LC; DECEMBER 2012
Answer question ONE and any other TWO questions.

QUESTION 1

(a) Determine whether A_{1}, A_{2}, and A_{3} are linearly dependent or independent if; $A_{1}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & -1\end{array}\right], A_{2}=\left[\begin{array}{ccc}-1 & 1 & 4 \\ 2 & 3 & 0\end{array}\right]$ and $A_{3}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 2 & 1\end{array}\right]$.
[5mks]
(b) Show that $\mathrm{v}=\{1\}$ is not a vector space.
[2mks]
(c) Find a linear transformation from \mathbb{R}^{2} into the plane
$w=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): 2 x-y+3 z=0\right\}$. Hence find $T=\binom{5}{-7}$ given that
$w_{1}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $w_{2}=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)$.
(d) In \mathbb{R}^{3} show that $\left(\begin{array}{c}-7 \\ 7 \\ 7\end{array}\right)$ is a linear combination of $\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}5 \\ -3 \\ 1\end{array}\right)$.
(e) Let $T: V \rightarrow W$ be a linear transformation.

Prove that $T(u-v)=T u-T v$
for all vectors $u, v \in V$.
(f) If $\pi=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): 2 x-y+3 z=0\right\}$ prove that the vectors in π have the
form $\left(\begin{array}{c}x \\ 2 x+3 z \\ z\end{array}\right)$ hence a find the basis for the set of vectors lying on the plane.
[6mks]
QUESTION 2
(a) Determine whether the three vectors in $\mathbb{R}^{3},\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right),\left(\begin{array}{c}2 \\ -2 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 7\end{array}\right)$ are linearly dependent or independent.
(b) Find a basis for the solution space of the homogenous systems given below

$$
\begin{array}{r}
x+2 y-z=0 \\
2 x-y+3 z=0
\end{array}
$$

Hence find the dimension of the solution space.
QUESTION 3
(a) Determine whether the polynomials
$x-2 x^{2} ; x^{2}-4 x$ and $-7 x+8 x^{2}$ are linearly dependent or independent, hence solve the homogenous systems.
(b) If $v=(x, y, z) \in H$ and $v_{1}=(2,-1,4) ; v_{2}=(4,1,6)$ prove that $H=\operatorname{span}\left\{v_{1}, v_{2}\right\}=\left\{v: v=a_{1}(2,-1,4)+a_{2}(4,1,6)\right\}$.

QUESTION 4

(a) Consider the set of vectors $w=\{(2,2,4) ;(0,4,10) ;(3,1,1)\}$ of \mathbb{R}^{3}, determine whether or not w is a linear independent set of vectors.
[10mks]
(b) Let T be a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2} and suppose that
$T\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\binom{2}{3} ; T\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\binom{-1}{4}$
and $T\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\binom{5}{-3}$ compute $T\left(\begin{array}{c}3 \\ -4 \\ 5\end{array}\right)$.
[6mks]
(c) Show that in $M_{23} ;\left(\begin{array}{ccc}-3 & 2 & 8 \\ -1 & 9 & 3\end{array}\right)$ is a linear combination of $\left(\begin{array}{ccc}-1 & 0 & 4 \\ 1 & 1 & 5\end{array}\right)$
and $\left(\begin{array}{ccc}0 & 1 & -2 \\ -2 & 3 & -6\end{array}\right)$.
[10mks]
QUESTION 5
(a) Determine the values of x and y that will make \mathbf{u} and \mathbf{v} equal
if $\mathbf{u}=(x+1,2, y-4,5)$ and $\mathbf{v}=(4,2,0,-5)$
[2mks]
(b) The matrix M of a linear transformation T from $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by, $\left(\begin{array}{ccc}1 & -1 & 3 \\ 2 & 0 & 4 \\ -1 & -3 & 1\end{array}\right)$
Determine the Kernel of T.
(c) Let M be $m \times n$ matrix and consider the mapping $T=\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(x)=M(x)$ for every n-vectors x. Show that T is a linear transformation.

