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Abstract. A spatial probabilistic landslide risk assessment and mapping 

model has been applied in a data scare region. The probabilistic model is 

based on a physical model based on Mohr coulomb failure criterion. A 

Monte Carlo simulation technique is applied to field collected data. The 

results are integrated and a probability of landslide is obtained at each cell 

level. The results are compared to a prepared landslide inventory. The 

overall accuracy of the model is 79.69%. 

1 Introduction  

The expansion of constructions and buildings in cities of developing countries creates new 

challenges in risk management of constructions and buildings and in environmental 

sustainable planning of peri-urban areas. Among the various potential risks, the landslide 

risk is a challenge for our study area. The Bujumbura peri-urban area has witnessed several 

hazards of different nature: floods, rock falls and landslides[1], [2]. In particular, landslides 

caused the loss of several lives, destruction of infrastructure, damage to land and loss of 

natural resources. Motivated by the increasing number of recorded incidents, Nibigira et al. 

(2015) inventoried past landslides in the western part of Burundi, which includes the 

Bujumbura region, and identified factors influencing the development of instabilities[3].  

Kubwimana et al. (2018) developed a landslide susceptibility map using Analytic Hierarch 

Process (AHP) for the Kanyosha river watershed (Kubwimana et al., 2018)[4]. 

Nevertheless, the statistical approach proposed by Kubwimana et al. (2018) did not take in 

account the physical parameters linked with slope stability analysis. Several studies 

assessing and mapping landslide susceptibility have been conducted worldwide using two 

principal approaches: deterministic and statistical. For the developed deterministic 

models[5]–[9], the relevant factor is the factor of safety based on slope stability analysis. 

Slope stability analyses of landslides in deterministic models are usually performed using 

conventional limit equilibrium method based on the Mohr–Coulomb failure criterion. 

Statistical approaches [10]–[14] have also been used for landslide susceptibility assessment. 
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Statistical approaches are more bounded to local particularities since they are always linked 

to a determined training dataset. The objective of this study is to develop landslide 

susceptibility maps using a probabilistic approach which takes in account the physical 

parameters of slope stability analysis and the uncertainties linked with them.  

2 Methods  

2.1 Study area  

The study area has 31 km2 (Fig 1). It covers15 administrative districts(Fig 2). The study area 

belongs to the Imbo region on his western part and belongs to the Mirwa region on his 

eastern part. The Imbo region is a valley adjacent to steep hills and mountains of the Mirwa 

region. Three major watersheds cross our study area. The altitude in our study area changes 

from 777 to 1386 m. The slope angle values range from 0° to 57°. The yearly average 

temperature is 23 °C, and the annual precipitation is 1274 mm[15]. 

    

Fig 1. Location Map of the Study area. 

 

        
           Fig 2. Study Area. 

2.2 Landslide inventory  

A landslide inventory map is required for accuracy assessment of the model results. Hence, 

a landslide inventory was produced using a 10 m–resolution Digital Elevation Model 

(DEM), literature review, aerial ortho-images, satellite imagery (Google earth Imagery) 

extensive field survey. In result, a detailed and reliable inventory map with a total of 89 
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landslides was created. The identified landslides were classified mainly as shallow 

translational slides according to classification proposed by Varnes[16]. 

2.3 Physical model  

Several deterministic model have been applied in landslide hazard mapping[6], [7], [9]. Lu 

and Godt (2008) proposed a generalized framework for the stability of infinite slopes under 

steady unsaturated seepage conditions[17]. As all the deterministic models, the purpose is 

to determine a safety factor reflecting the stability of a considered slope. The proposed 

framework by Lu and Godt relies on the existing understanding of unsaturated-zone 

hydrology and considers for the first time, the contribution of suction stress in the stress 

analysis. The safety factor is defined by the relationship:  

 

  FS = tanφ' / tanβ + 2c' / γHsin2β – [σ
s 
(tanβ + cotanβ) tanφ'] / γH (1) 

 

Where φ' is the friction angle; β is the slope angle; c' is the soil cohesion; γ is the unit 

weight of moist soil; H is the height of the soil column above the bedrock and σ
s
 is the 

suction stress defined by: 

 

     σ
s
 = ln [(1+q/ks) e

-γwαz
 – q/ks] / α  ua – uw ≤ 0 (2)   

 

σ
s
 = {ln [(1+q/ks) e

-γwαz
 – q/ks] / α} / {1+ {-ln [(1+q/ks) e

-γwαz
 – q/ks]

 n
}

 (n—1)/n
}  ua – uw > 0 (3) 

 

where ks is the field hydraulic conductivity; q is the steady infiltration; γw is the unit weight 

of water; α and n are the empirical fitting parameters of unsaturated soils properties and the 

matric suction ua – uw is defined by: 

 

  ua – uw = –ln [(1+q/ks) e
-γwαz

 – q/ks] / α (4) 

 

The proposed slope stability takes in account soil suction. However, in the framework of 

our research the infiltration rate is considered equal to soil hydraulic conductivity. In this 

particular case the safety factor takes the form: 

 

  FS = tanφ' / tanβ + 2c' / γHsin2β (5) 

 

A field survey and an extended laboratory work were conducted for the 15 administrative 

districts. Two hundred and twenty-five samples were collected and analyzed in laboratory. 

At each district level, a mean average value and a standard deviation for the concerned 

variables were determined from laboratory analysis(Table 1). 

 
Table 1. Values of input variables 

District Friction Angle, 

degrees 

Cohesion, 

kPa 

Soil Bulk Density, 

kN/m3 

Mean St.Dev Mean St.Dev Mean St.Dev 

Ngongo 34.860 1.040 22.680 4.461 14.351 0.103 

Sagamba 35.447 1.851 27.453 11.845 13.834 0.595 

Kinama 34.867 2.307 19.507 9.187 12.714 0.234 

Benge 37.680 3.301 31.600 10.315 14.478 0.237 
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The definition of the depth of soils is difficult to conduct on a regional scale. In this study a 

soil depth model, using a simplified approach often used in largescale regional analyses, is 

applied[18]. The considered model correlates soil depth to the local slope and has the form: 

 

  Hi = Hmax [1– (tanβi – tanβmin) (1 – Hmin / Hmax) / (tanβmax – tanβmin)] (6) 

where Hi is the computed soil depth, Hmax and Hmin are respectively, the maximum and the 

minimum soil depth measured in the area, βi is the local slope angle value and βmax and βmin 

are respectively maximum and minimum slope angle value measured in the area. 

2.4 Monte Carlo simulations  

In regional slope stability assessment, probabilistic methods are applied. These methods 

provide an accurate estimation of slope stability at a regional scale without the amount of 

laboratory and field work required in physical models. There are several methods such as 

the point estimate method [19] , first order second moment [20], [21] or Monte Carlo 

simulation [22] which are usually combined with a slope stability model to provide a 

probability of landslide instead of a safety factor. In this work a Monte Carlo simulation is 

applied. Soeters and Westen (1996) had given a detailed description about the application 

of Monte Carlo simulation method in slope stability assessment [23]. The approach 

includes the following steps:  

1. Generate a sample of random variables using the probability distribution of φ’, c' and γ   

using Monte Carlo simulation method. 

2. For each grid cell, compute the safety factor using the generated samples of random 

variables. Repeat the procedure N times. In most studies, N has a value between 50 and 

2000. In our cases N has the value of 500. After N computations, probabilistic distribution 

curve of the slope safety factor can be obtained. By integrating the slope failure safety 

factor distribution curve, slope failure probability for the grid can be finally obtained. 

3. Repeat the above procedure for the entire grid and create a landslide probability map. 

3 Results 

The landslide susceptibility map obtained spatially approximates landslide inventory map 

prepared which validates the results obtained with our model. Landslide susceptibility map 

Gihinga 35.453 1.524 40.887 10.139 14.270 0.287 

Ruyange 34.840 2.573 29.460 13.312 13.051 0.294 

Nyamutenderi 39.020 1.236 14.000 4.879 12.946 0.268 

Kibuye 26.180 6.257 38.140 6.465 13.271 0.272 

Rweza 25.280 1.849 36.680 17.513 14.258 0.218 

Kizingwe-Bihara 31.453 5.861 39.720 21.587 13.604 0.353 

Kanyosha 38.200 4.975 26.120 19.162 14.140 0.231 

Kamesa 35.100 1.666 22.600 12.665 12.946 0.225 

Kinanira I 37.200 5.703 17.260 10.789 15.050 0.229 

Gitaramuka 30.540 6.390 48.320 22.543 12.770 0.320 

Gasekebuye 33.640 3.568 44.380 12.806 14.511 0.093 
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obtained using Monte Carlo simulations shows that 17.86% of the study area is under high 

probability of landslide(Fig. 3). 

 

The model correctly detected the areas 

with low probability of landslide more 

accurately compared to areas with high 

probability of landslide. Respectively, 

88.23% of true negative rate to 38.64% 

of true positive rate. However, the 

model has an overall accuracy of 

79.69% hence an error rate of only 

20.31%(Table 2). Around 52.11% of 

areas with high landslide probability 

have a mean friction angle of 35 

degrees. This shows that there is no 

linear relationship between probability 

of landslide and the friction angle in this 

region. In contrast, cohesion shows 

direct relationship to landslide 

probability since 41.33% of the areas 

with high probability of landslide have a 

mean cohesion value of 19kPa 

corresponding to the lowest values of 

cohesion in the region. The landslide 

susceptibility map produced spatially 

approximates the slope angle map. This 

is due to the high contribution of the 

slope angle the probability of landslide. 

 
Fig. 3. Landslide susceptibility map. 

 
Table 2. Confusion Matrix 

Observed 

Predicted 

landslide Percentage 

Correct no landslide landslide 

landslide 

no landslide 31592 4214 88.23 

landslide 4571 2879 38.64 

Overall Percentage   79.69 

3 Conclusion 

This research presents a complete framework for a GIS-based landslide hazard assessment 

and mapping in a data scarce region. The information provided forms the basis for various 

stakeholders in decision-making especially for risk management and environmental 

planning. The method proposed combines the physical parameters of slope stability and the 

probabilistic estimation of slope failure. The accuracy of the model was assessed using a 

prepared landslide inventory. The model proposed has an overall accuracy of 79.69%. The 

results presented here showed the importance of soil cohesion in this particular region. 

Further study to validate and compare the model with other models need to be conducted. 
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