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ABSTRACT 
 

A new guidance law is derived for missile against maneuvering target by adopting nonlinear H� 
control theory. The guidance law is based on three dimension (3D) nonlinear kinematics described 
by modified polar coordinate (MPC). In MPC, only three differential equations are used to describe 
the 3D relative motion between missile and target. The new guidance law is designed by solving 
the Hamilton-Jacobi-Isaacs (HJI) equation by simultaneous policy update algorithm (SPUA). In 
SPUA a sequence of Lyapunov function equations (LFEs) are used in direct successive 
approximation of HJI equation resulting to one interactive loop instead of two loops. Gelerkin’s 
method is used to solve the LFEs and to develop Galerkin-based SPUA. Computationally efficient 
SPUA (CESPUA) based on Galerkin’s method was subsequently used to solve the LFE in each 
iterative loop of SPUA. The proposed guidance law does not require the information of the target 
accelerations and avoids control of relative velocity in the direction of line of sight. In comparison to 
sliding mode guidance law, the developed law utilizes less control energy, has smaller interception 
time, and offers better tracking performance against uncertain target accelerations. 
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1. INTRODUCTION  
 
Proportional navigation (PN) guidance law is 
widely used in practical applications because of 
its ease in implementation and simple form [1]. 
PN provides optimal performance for non-
maneuvering targets. In an event where the 
target’s acceleration can be soundly estimated 
continuously during the flight, the augmented 
proportional navigation (APN) is used [1]. For 
targets with high maneuver, an optimal guidance 
law and nonlinear approximation for capture of 
the decelerating target [2] and accelerating target 
[3] have been studied. A comprehensive 
literature analysis on optimal guidance laws 
(OGLs) is evaluated in [4,5]. Both theory and 
extensive simulation studies indicate the 
performance of classical guidance laws and 
OGLs deteriorate for unpredictable maneuvering 
targets because these two guidance laws 
operate on perfect knowledge of target 
maneuvers. 
 
To handle system uncertainties and exogenous 
disturbances, advanced control techniques, have 
been proposed in recent years such as, � -
synthesis control, H∞  control and sliding-mode 
control etc. In sliding-mode control, Zhou et al. [6] 
derived an adaptive sliding-mode guidance law 
using linearized equations, Babu et al. [7], using 
the sliding surface of zero line-of-sight rate based 
on the Lyapunov method, proposed a guidance 
law for highly maneuvering targets, Moon et al. [8] 
studied the missile guidance law by variable-
control structure. Brierly and Longchamp [9] 
applied a sliding mode control to a nonlinear 
system representing an air-to-air missile target 
engagement scenario. A sliding mode terminal 
guidance of missiles against maneuvering 
targets in the three-dimensional space is 
designed considering non-decoupling three-
dimensional engagement geometry in [10]. Even 
though the sliding-mode control meets robust 
stability requirements, it cannot design the 
system performance boundedness. 
  
Several papers have been proposed adopting 
nonlinear H∞  control to solve the guidance 
problem. Liao et al. [11] derived a three-
dimensional law based on nonlinear 
robust H∞  filtering and input-to-state stability 
(ISS) for interception of maneuvering targets in 
the presence of input saturation. Yang and Chen 

[12,13] derived a nonlinear H∞ guidance law for a 
worst-case target with an H∞  evasive strategy.             
In [12,13] the H∞  Guidance law includes 
accelerations in both directions along the line of 
sight (LOS) and perpendicular to the LOS. 
However, acceleration control in the direction of 
along the LOS is very difficult and in most cases 
the missile’s acceleration is just controlled in the 
direction perpendicular to the missile body. Chen 
et al. [14] derived a new nonlinear fuzzy H∞ guidance law with a saturation of actuators 
against maneuvering targets. The model was 
acquired by interpolating numerous linearized 
systems at different operating points through 
fuzzy certainty functions. Then, based on this, 
they constructed a H∞  control to handle the 
approximation error and external disturbances. 
The constructed nonlinear fuzzy H∞ guidance law 
was with control constraints against target 
maneuvers without solving the complicated HJI 
equation. It is a known fact that the 
approximation error between the fuzzy model 
and the true one is difficult to obtain exactly [15]. 
They assumed that the model error was included 
in a function called upper bound. But, if the 
approximation error cannot be evaluated in 
advance, their proposed fuzzy H∞ guidance law 
only guarantees robust performance of the 
missile–target pursuit dynamics approximated by 
the linear fuzzy model. The steady state error 
always exists. 
 
There are two major setbacks in the designing H∞ guidance law for homing missile at present. 
One is how to easily find the solution to                     
HJI equation, while the other is how to avoid 
control of the relative velocity between                   
missile and target. In this paper, we present a 
nonlinear H∞ guidance law for a homing missile 
against a maneuvering target. The guidance law 
is based on three dimension (3D) nonlinear 
kinematics described by modified polar 
coordinate (MPC). In MPC, only three differential 
equations are used to describe the three-
dimension relative motion between missile and 
target instead of six differential equations in the 
polar coordinates [16]. In addition, control of 
acceleration along the LOS is avoided. The HJI 
equation is solved by Galerkin Simultaneous 
policy update algorithm. This is the first time, to 
the best of our knowledge; SPUA technique has 
been applied to solve the nonlinear missile 
guidance problem. 



2. NONLINEAR MISSILE- KINEMATICS 
MODEL 

 
In this study, a 3D engagement geometry is 
considered as shown in Fig. 1. The relative 
position vector (LOS) � between the missile and 
the target is  
 � � �	 
 �� � ��                       
 
By taking the first-order derivative and second
order derivative of equation (1) with respect to 
time, we obtained the relative dynamics between 
target and missile written in the form of,
 �� � ��� � ��� � �� 
 ��                             

�� � ��� � 2���� � ��� � �� 
 ��
 

 
Fig. 1. Three- dimension relative motion model 

in MPC 
 

Where 
 

1. �	  and ��  are the position of target and 
missile, respectively in an inertial 
coordinates OXYZ. 

2. � is the range between the missile and the 
target. 

3.  � is the unit vector in the direction of LOS.
4. �� , ��  and �� , ��  are target and missile 

velocity and acceleration vectors, 
respectively. 
 

Let Ω be the angular velocity vector of the LOS. 
From [15] we have e� � � Ω � e� and 
Then the unit vectors are defined as, 
and  eΩ � Ω ‖Ω‖⁄ . �� , and  �Ω  are the unit vectors 
in the direction of �� and Ω�e� e�, eΩ�  Constructs an orthogonal coordinate 
for three-dimension space, which is the MPC 
compared with classical polar coordinate 
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KINEMATICS 

In this study, a 3D engagement geometry is 
1. The relative 

between the missile and 

                   (1) 

order derivative and second-
order derivative of equation (1) with respect to 
time, we obtained the relative dynamics between 
target and missile written in the form of, 

                            (2) 
 

                  (3) 
 

 

dimension relative motion model 

the position of target and 
in an inertial 

is the range between the missile and the 

is the unit vector in the direction of LOS. 
are target and missile 

velocity and acceleration vectors, 

be the angular velocity vector of the LOS. 
and Ω �  e� � e� � . 

Then the unit vectors are defined as, e� � e� � ‖Ω‖⁄   
are the unit vectors 

 respectively. 
Constructs an orthogonal coordinate 
dimension space, which is the MPC 

compared with classical polar coordinate 

�e� eθ, eϕ�  [13]. However, we should note that 
MPC and classical polar coordinate cannot be 
mutual transformed completely 
Accelerations of the missile and the target can be 
expressed in MPC �e� e�, eΩ� as 
 �� �  �!� �  �"�� �  �Ω

�Ω                      

�� �  	!� �  	"�� �  	Ω�Ω                       

Assume state variables 
 

# � $#%#&#'
( � $ ���‖Ω‖� ( 

 
From literatures [17,18], the system equations of 
relative kinematics between the missile and the 
target are 
 

2
1 2

3
Tr Mr

dx x
a a

dt x
= + − ,  1 0 10( )x t x

2 1 2

3
Tt Mt

dx x x
a a

dt x
= − + − ,  2 0 20( )x t x

3
1

dx
x

dt
=   , 3 0 30( )x t x=                 

Comparing the system equations (5) with 
equations used to describe missile
kinematics in [13], we can conclude that the 
system equations in MPC are simpler and more 
concise compared to those in classical polar 
coordinates (PC). 
 
3. GUIDANCE LAW DESIGN BASED ON )∞∞∞∞ CONTROL 
 
In the terminal phase of guidance, the gravity on 
missile and target are almost equal since the 
distance between the missile and target is much 
smaller than the radius of the earth. Generally, 
the acceleration in the direction of the LOS 
cannot be controlled. Theoretically, it is assumed 
that acceleration components along the LOS 
satisfy  �! �  	! � *  and components 
perpendicular to the LOS satisfy   	" �  +	" � *� . Thus system equations 
be rewritten as 
 

2
1 2

3

dx x

dt x
=  , 1 0 10( )x t x=                            
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. However, we should note that 
MPC and classical polar coordinate cannot be 
mutual transformed completely [16]. 
Accelerations of the missile and the target can be 

                   (4a) 
 

                   (4b) 
 

, the system equations of 
relative kinematics between the missile and the 

1 0 10( )x t x=         (5a) 

 

2 0 20( )x t x=
  

(5b) 

 

                              (5c)  

 
Comparing the system equations (5) with 
equations used to describe missile-target 

, we can conclude that the 
system equations in MPC are simpler and more 
concise compared to those in classical polar 

GUIDANCE LAW DESIGN BASED ON 

In the terminal phase of guidance, the gravity on 
missile and target are almost equal since the 
distance between the missile and target is much 
smaller than the radius of the earth. Generally, 

he direction of the LOS 
Theoretically, it is assumed 

that acceleration components along the LOS 
and components  �" �  +�" � *�, 

. Thus system equations (10) can 

                         (6a) 



 
 
 
 

Makena and Omwoma; AIR, 9(4): 1-21, 2017; Article no.AIR.33186 
 
 

 
4 
 

2 1 2

3

ˆ ˆTt Mt

dx x x
a a

dt x
= − + −  , 2 0 20( )x t x=

 
(6b) 

 

3
1

dx
x

dt
= ,       3 0 30( )x t x=

                       
(6c) 

 
We rewrite (5) as (6) in the standard forms of 
system [19], 
 

1 2( ) ( ) ( )x f x g x w g x u= + +&                  (7a) 

 
1( )

( )
h x

z x
u

 
=  
 

                                      (7b) 

 
Where x is the state vector, # ∈ -.   with control 
input / ∈ -0  and subjected to a set of 
exogenous input disturbance variable 1 ∈ -    
and 2 ∈ -3  is penalized output. The terms 4�#�, *%�#�, *&�#� and ℎ%�#� are smooth 
(Differentiable for all degrees of differentiation 
i.e. :∞) mapping defined in the neighbourhood of 
the region in -.  and 4�0� � ℎ%�0� � 0 .The 
penalty function is chosen as ℎ%�#� � #&& #'⁄ ��‖Ω‖&, which is a weighting function with respect 
to the turning rate of the LOS ‖Ω‖ � #& #'⁄  . For 
this guidance problem, the functions and 
variables are given as,  
 

2
2

3

1 2

3

1

( )

x

x

x x
f x

x

x

 
 
 
 

= − 
 
 
 
 

   , 1

0

( ) 1

0

g x

 
 =  
  

  ,  

2

0

( ) 1

0

g x

 
 = − 
  

 ,  
2
2

1
3

( )
x

h x
x

=   , ˆ( ) Mtu x a=   ,

ˆ( ) Ttw x a=  
 
Substitute (7) into the Hamilton-Jacobi-Isaac 
inequality (8) [19], 
 

1 1 2 2 1 12

1 1 1
0

2 2

T
T T TV V V

f g g g g h h
x x xγ

 ∂ ∂ ∂     + − + ≤      ∂ ∂ ∂      
                                (8) 

 
The desired Hamilton-Jacobi-Isaac inequality for 
the guidance system is: 

22 4
2 1 2 2

1 2 2
1 3 2 3 3 2 3

1 1 1
1 0

2 2

x x x xV V V V
x

x x x x x x xγ
  ∂ ∂ ∂ ∂− + + − + ≤  ∂ ∂ ∂ ∂  

                                                                    (9) 
 

The general solution of inequality (8) is very 
difficult to obtain, but a special solution can be 
found by successive Galerkin’s approximation. A 
smooth positive definite solution <�#�  of 
inequality (8) will make states locally 
asymptotically stabilizing.  
 
To design the terminal guidance law, it is 
required that the turning rate of the LOS goes to 
zero asymptotically; the relative velocity along 
the LOS converges to a negative value because 
its only then that the relative distance between 
the missile and target (�� decreases to zero. For 
the interception, it is sufficient that �  becomes 
zero in an instance ( ��=>� �  0 , where =>  is 
interception time) and there is no need for � to 
asymptotically converge to zero. Therefore, if the 
solution <�#�  is smooth, nonnegative, and 
positive definite with respect to the turning rate of 
the LOS, the above conditions can be satisfied 
for proper initial states. 
 
4. NONLINEAR )∞∞∞∞ CONTROL THEORY 
 
In this section, we introduce the nonlinear control 
standard results for later use. Take into account 
a nonlinear state space system [17]: 
 

( ) ( )x f x g x w= +& , sw R∈                    (10a) 
 

( )z h x= , sz R∈                                    (10b) 
  

When control u is applied to the system, we 
consider the nonlinear system in equation (7). 
The purpose of control is to stabilize the closed 
loop and to attenuate the effect of disturbance 
input w to the output to be regulated z. The 
nonlinear H∞ control problem of the system (7) is 
to evaluate a control u that makes ℒ&  gain of 
system (10) equal or less than a positive 
constant @& when initial states satisfy #�=A� � 0 , 
that is, 
 

0 0

2( ) ( ) ( ) ( )
T TT T

t t
z t z t dt w t w t dtγ≤∫ ∫ ,  ∀1 ∈ ℒ&C=A, DE          

      (11) 
 

Since 
0

( ) ( )
T T

t
w t w t dt∫  is the energy input of the 

system (target’s acceleration energy cost) and 

0

( ) z( )
T T

t
z t t dt∫ is the energy output of the 
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system (missile’s weighting energy cost), then 

0

( ) z ( )
T T

t
z t t d t∫

0

( ) ( )
T T

t
w t w t d t∫F   is known as 

the ℒ&  gain of the system. The smallest @ 
satisfying equation (10) is called the H∞- norm of 
the system. The solutions to H∞  problem are 
related to Hamilton-Jacobi inequality. Consider 
the nonlinear system (7) with disturbances. Let 
γ > 0 , suppose there exists a smooth solution <�#� ≥ 0 to the Hamiltonian-Jacobi inequality (8). 
Where  # ≠ 0,  <�0� � 0. As van der Schaft [19] 
shows, a sufficient condition for system (7) to 
have ℒ&-gain less than or equal to @ > 0 is that:  
 

2

1
( ) ( )

2

T
T V

u x g x
x

∂ = −  ∂                            
 (12) 

 

Once V  has been derived, the H∞ control law in 
equation (12) can be determined. Hence, solving 
the nonlinear H∞ control problem is equivalent to 
finding positive function <�#�  satisfying the HJI 
equation (11). Nonlinear H∞  control can 
guarantee that the closed-loop system (7a) is 
internally stable. This is verified by showing that 
if <�#� > 0 is a solution of the HJI then; <�#� is a 
qualified Lyapunov function of system (7a). To be 
a Lyapunov function <�#� must satisfy the 
condition <� �#� ≤ 0. From the HJI equation (11), 
the properties of <�#� > 0  and <� �#� ≤ 0  show 
that <�#�  is a qualified Lyapunov function, and 
hence the closed-loop system (7a) in the sense 
of Lyapunov is stable. To summarize, nonlinear H∞  control theory [19] guarantees: (1) state 
boundedness (Lyapunov stability) and (2) 
performance boundedness: ‖2‖& ≤ @‖1‖&. 
 
5. SOLUTION OF HJI VIA GALERKIN’S 

APPROXIMATION 
 
In this section, the simultaneous policy update 
algorithm (SPUA) developed in [20,21] is used to 
solve the HJI equation. In SPUA the Lyapunov 
function equations are used directly to 
approximate the HJI equation. In this algorithm, 
the control and disturbance were updated 
simultaneously as shown in algorithm 1. The 
convergence of SPUA is verified in [20]. 
 
5.1 Simultaneous Policy Update 

Algorithm 
 
Algorithm 1: given an initial function <�A� ∈ KA.  
 

Let 
( 0 )

(0 )
2

1

2
T V

u g
x

∂
= −

∂
 and  

( 0 )
( 0 )

12

1

2
T V

w g
xγ

∂
=

∂
 and 0i =  

 
Solve for <�LM%�  from: 
 

( )
( 1)

2 2( ) ( ) ( ) 2 ( )
1 2 0

i
i i T i iV

f g w g u h h u w
x

γ
+ ∂   + + + + − =   ∂ 

                                      (13) 
 

Update control and disturbances policies with  
 

2

1

2

(i+1)
(i) T V

u g
x

∂
= −

∂
                            (14) 

 

12

1

2

(i+1)
(i) T V

w g
xγ

∂
=

∂
                                  (15) 

 
Set N � N � 1. If P<�L� 
 <�LQ%�P

Θ
≤ R �R is a small 

positive real number), stop and output <�L� as the 
solution of HJI equation (4). Else go back and 
solve for  <�LM%� and continue. 
 
The solution of equation (13) converges to 
solution of HJI equation when i goes to infinity, 
as established in [22]. The essence of algorithm1 
is to reduce the HJI equation to an infinite 
sequence of linear partial differential equation 
(13) which can be rewritten as; 
 

( )
2 22

1 2 0
T

TV
f g w g u h h u w

x
γ

 ∂  + + + + − =  ∂
     

                                          (16) 
 

With a boundary condition V(0)=0 equation (16) 
Generalized-Hamilton-Jacobi-Isaacs (GHJI) 
equation which is a Lyapunov function [22]. In 
order to obtain an implementable algorithm we 
must approximate the solution of the GHJI 
equations such that the control /�L�  can be 
practically implemented in feedback form. The 
GHJI is difficult to solve analytically. The 
challenge with algorithm 1 is that equation (13) is 
also difficult to solve. To approximate this 
equation, we employ a global Galerkin’s 
approximate discussed in the following section. 
 
5.2 Galerkin Approximation 
 
Let the partial differential equation S�<� � 0 with 
boundary conditions <�0� � 0. Galerkin method 
assumes that we can find a complete set of basis 
functions TUVWVX%

∞  so that UV�0� � 0, ∀Y  and 
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<�#� � ∑ [VUV�#�∞VX% , where the sum is presumed 
to converge point-wise in some set Θ  [22]. An 
approximation of V(x) is formed by truncating the 
series to <�#� � ∑ [VUV�#�\VX% . The coefficients [V 
are obtained by solving the algebraic equation  
 

( )( ) ( ) 0N lV x x dxφ
Θ

Α =∫  Where ] � 1, … … . , `   

                (17) 
 

We use Galerkin’s method to approximate GHJI 
equation and show that, when this approximation 
is combined with algorithm 1, the result is a 
practical algorithm for approximating nonlinear H∞ control laws. 
 
Assume that /: Θ → -0 is a feedback control law 
that asymptotically stabilizes system (2) over a 
bounded domain of state space Θ. Also assume 
that the set TUVWVX%

∞

 is a complete basis set for 

the domain of the GHJI equation (16). Then, 

according to equation (17), an approximate 
solution to equation (16) is given by an infinite 
series of known functions UV�#�  that are 
continuous and defined everywhere on the 
domain of state space  Θ  as <�LM%��#� �∑ [V�LM%�UV�#�∞VX%  [22]. The unknown coefficients 

[V�LM%� are found using Galerkin solution strategy. 
For implementation purpose and practical issue, 
an infinite number of terms cannot be used to 
express <�#� , so an approximation to the 
assumed solution having the desired degree of 
accuracy can be formed by considering the first `  terms of the infinite series: <�LM%��#� �∑ [V�LM%�UV�#�\VX% , where the sum is assumed to 
converge point wise in Θ. The approximation to 
the assumed solution <�LM%��#� is dependent on 
both the number and characteristics of the basis 
functions chosen to form the approximation. The 
coefficients [V�LM%�  are calculated by solving the 
following algebraic equation: 

 

( )
( 1)

2 2( ) ( ) ( ) 2 ( )
1 2

ˆ
0

T
i

i i i i T
j

V
f g w g u u w h h

x
dxγ φ

+

Θ

  ∂
 + + + − + ∂   

=∫  

Y � 1, . . . . , `,                                                                                                               (18) 
 

( )
( 1)

2 21 ( ) ( ) ( ) 2 ( )
1 2 0

T
N

i
j j

j i i i i T
j

c

f g w g u u w h h dx
x

φ
γ φ

+

=

Θ

  
 ∂  
  ⇒ + + + − + = ∂ 
 
 

∑
∫  

( ) 2 2( 1) ( ) ( ) ( ) 2 ( )
1 2

1

0
N

ji i i i i T
j j

j

c f g w g u u w h h dx
x

φ
γ φ+

Θ
=

 ∂ 
⇒ + + + − + =  ∂   

∑∫  

 

Defining c\�LM%� � d[%�LM%�, … … [\�LM%�e	
,Φ\�#� � �U%, .  .  .  .  .  . U\�	. In which 

∇Φ\�#� � ghijkil m . . . . . . . . . . hijnil mo	
 is the Jacobian of Φ\. 

 

( ) ( ) 2 2( 1 (i) ( ) ( ) 2 ( )
1 2c 0

Ti i i i T
N N Nf g w g u u w h h dxγ+

Θ
 ⇒ ∇Φ + + + − + Φ =
  ∫  

( ) ( ) ( )2 2( 1) ( ) ( ) ( ) 2 ( )
1 2c i i i i i T

N N N Nf g w g u dx u w h h dxγ+

Θ Θ
 ⇒ ∇Φ + + Φ = − − + Φ ∫ ∫  

 

Since dc\�LM%�e	
Φ\�#� � Φ\	 �#�c\�LM%�   

 

( ) ( )2 2( ) (i) ( 1) ( ) 2 ( )
1 2 c

Ti T i i i T
N N N Nf g w g u dx u w h h dxγ+

Θ Θ
 ⇒ Φ + + ∇Φ = − − + Φ
  ∫ ∫  
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( ) ( )2 2( ) ( ) ( 1) ( ) 2 ( )
2 1 c

TT T i i T i i i T
N N N N N N Nf dx g u g w dx u w dx h hdxγ+

Θ Θ Θ Θ
 ⇒ Φ ∇Φ + Φ + ∇Φ = − Φ − − Φ
  ∫ ∫ ∫ ∫

 
That is  
 p�L�c\�LM%� � 
q�L�                                                                                                                            (19) 
 
Where 
 

p�L� � p% � p&�L�  ,   1
T T

N NA f dx
Θ

= Φ ∇Φ∫ , ( ) ( ) ( )
2 2 1( )i i i T T

N NA g u g w dx
Θ

= Φ + ∇Φ∫                    (20) 

 

 q�L� � q% � q&�L�  , 1
T

Nb h hdx
Θ

= Φ∫  ,  
( ) 2 2( ) 2 ( )
2 ( )i i i

Nb u w dxγ
Θ

= Φ −∫                                 (21) 

 
From equation (19), the coefficients c\ can be computed with  
 c\�LM%� � 
dp�L�eQ%q�L�                                                                                                                     (22) 

 
Where pL  is invertible [22]. Then the solution of Lyapunov function equation (13) is obtained by; 
 <�LM%��#� � �[�LM%��	Φ\�#� � Φ\	 �#�[�LM%�                                                                                      (23) 

 
Continuous function can be uniformly estimated to any degree of precision via a complete set of linear 
independent basis functions. This can be done by application of the famous high-order Weierstrass 
approximation theorem [23]. Therefore by using any infinite-dimensional linear independent basis 
function set Φ �#� � TUV�#�WVX%

∞

 the solution of HJI equation can be uniformly estimated to any degree 

of precision. 
 
5.3 Galerkin Simultaneous Policy Update Algorithm 
 
In this section we used Galerkin simultaneous policy update algorithm (GSPUA) developed in [20] to 
solve the GHJI equation (13). Using equations (14) and (15), to update the control law equation and 
disturbance policy, we obtain 
 

( 1)
( ) ( 1) ( 1)

2 2 21

ˆ1 1 1
ˆ c c

2 2 2

φ+
+ +

=

∂∂
= − =− = − ∇Φ

∂ ∂
∑

i
N ji T T i T T i

N Nj

V
u g g g

x x
                                          (24) 

 
( 1)

( ) ( 1) ( 1)
1 1 12 2 21

ˆ1 1 1
ˆ c c

2 2 2

φ

γ γ γ

+
+ +

=

∂∂
= = = ∇Φ

∂ ∂
∑

i
N ji T T i T T i

N Nj

V
w g g g

x x
                                  (25) 

 
Then the GSPUA for the solution of HJI equation is presented as follows. 
 
Algorithm 2 (GSPUA)  
 
Step 1:  select the independent basis function set Φ\�#�, and evaluate p%    rs q%. Give the initial 
coefficients [�A� such that <t �A� ∈ KA.  
 

Let (0) (0)
2

1
ˆ

2
T T

Nu g c=− ∇Φ ,  (0) (0)
12

1
ˆ

2
T T

Nw g c
γ

= ∇Φ   and i=0 
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Step 2:  compute p�L�  and q�L�  according to 
equations (20) and (21). And then solve equation 
(22) for [�LM%� 
 
Step 3:  update the control and disturbance 
policies 
 

( 1) ( 1)
2

1
ˆ

2
i T T i

Nu g c+ +=− ∇Φ
 

 
( 1) ( 1)

12

1
ˆ

2
i T T i

Nw g c
γ

+ += ∇Φ  

 
Step 4:  set N � N � 1 , P[�L� 
 [�LQ%�P ≤ R  ( R  is a 
small positive real number), stop and use [�L� as 
the coefficient for < ∗ (i.e. < ∗ is approximated 

expressed with <∗ � d[�L�e	
Φ\), else go back to 

step 2 and continue. 
 
The convergence of algorithm 2 is proved in [20]. 
In order to solve for the coefficients c�LM%�  from 
equation (22) in the GSPUA, we are required to 
calculate the integrals p�L�  and q�L�  in each 
iterative step. This is often time-consuming and 
the number of basis elements needed to form a 

complete basis grows exponentially with the 
dimension of system states. As the number of 
basis elements grows, an increasing amount of 
memory is needed to store the coefficients in the 
estimation and this causes run-time execution 
problems. To overcome this problem, we use 
computationally efficient simultaneous policy 
update algorithm (CESPUA) derived in [20]. 
CESPUA improves the estimation efficiency in 
two ways: (1) it evaluates all integrals altogether, 
this reduces the number of integral evaluations. 
(2) The use Monte Carlo method together with 
the Latin hypercube sampling (LHS) to evaluate 
integrals, which improves the efficiency of 
integral evaluations. We write /+ �L� and 1v �L� as 
 

( ) ( ) ( )
2 2

1 1

1 1
ˆ

2 2

N N
j ji T i i T

j j
j j

u g c c g
x x

φ φ
= =

∂ ∂   
= − = −   ∂ ∂  

∑ ∑                      

(26) 
 

( ) ( ) ( )
1 12 2

1 1

1 1
ˆ

2 2

N N
j ji T i i T

j j
j j

w g c c g
x x

φ φ
γ γ= =

∂ ∂   
= =   ∂ ∂  

∑ ∑
               

    

(27) 
 

Substituting equations (26) and (27) into p&�L�  in 
equation (20) yields; 

 

( )(i) ( ) ( )
2 2 1ˆ ˆ

Ti i T
N NA g u g w dx

Θ
= Φ + ∇Φ∫  

       ( ) ( )
2 2 1 12

1 1

1 1

2 2

T
N N

j ji T i T T
N j j N

j j

g c g g c g dx
x x

φ φ
γΘ

= =

    ∂ ∂   
= Φ − + ∇Φ          ∂ ∂        

∑ ∑∫  

  ( ) ( )
2 2 1 12

1 1

1 1

2 2

T TN N
j ji T T i T T

j N N j N N
j j

c g g dx c g g dx
x x

φ φ
γΘ Θ

= =

∂ ∂
= − Φ ∇Φ + Φ ∇Φ

∂ ∂∑ ∑∫ ∫                    (28) 

 
Since, 
 

1

1
2 2 2 2

T
j T T T N

N N

N

g g g g
x x x

φ
φ φφ

φ

 
∂ ∂∂  Φ ∇Φ =   ∂ ∂ ∂ 

  

M L  

1
1 2 2 1 2 2 1 2 2

1
2 2 2 2 2 2

1
2 2 2 2 2 2

j

j j

T T T
j j jT T Tl N

TT T
j jT T Tl N

k k k

T TT
j T T Tl N

N N N

g g g g g g
x x x x x x

g g g g g g
x x x x x x

g g g g g g
x x x x x x

φ φ φφ φφφ φ φ

φφ φφ φφφ φ φ

φ φφ φ φφφ φ φ

 ∂ ∂ ∂∂ ∂∂
 ∂ ∂ ∂ ∂ ∂ ∂ 
 
 

∂∂ ∂∂ ∂∂ =
 ∂ ∂ ∂ ∂ ∂ ∂


 ∂ ∂∂ ∂ ∂∂
 ∂ ∂ ∂ ∂ ∂ ∂ 

L L

M O M N M

L L

M N M O M

L L
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And, 
 

1

1
1 1 1 1

T
j T T T N

N N

N

g g g g
x x x

φ
φ φφ

φ

 
∂ ∂∂  Φ ∇Φ =   ∂ ∂ ∂ 

  

M L  

1
1 1 1 1 1 1 1 1 1

1
1 1 1 1 1 1

1
1 1 1 1 1 1

j

j j

T T T
j j jT T Tl N

TT T
j jT T Tl N

k k k

T TT
j T T Tl N

N N N

g g g g g g
x x x x x x

g g g g g g
x x x x x x

g g g g g g
x x x x x x

φ φ φφ φφφ φ φ

φφ φφ φφφ φ φ

φ φφ φ φφφ φ φ

 ∂ ∂ ∂∂ ∂∂
 ∂ ∂ ∂ ∂ ∂ ∂ 
 
 

∂∂ ∂∂ ∂∂ =
 ∂ ∂ ∂ ∂ ∂ ∂


 ∂ ∂∂ ∂ ∂∂
 ∂ ∂ ∂ ∂ ∂ ∂ 

L L

M O M N M

L L

M N M O M

L L







  

 
Therefore, we can rewrite equation (28) as 
 

( ) ( ) ( )
2 2

1 1

1 1

2 2

N N
i i i

j j j j
j j

A c X c Y
γ= =

= − +∑ ∑
 

 

 ( )
2

1

1 1
( )

2

N
i

j j j
j

c X Y
γ=

= − +∑
                                                                                                   

 (29) 

 
Where,                                             
 

 2 2

T
j T T

j N NX g g dx
x

φ
Θ

∂
= Φ ∇Φ

∂∫                                                                                                  (30) 

 

  1 1

T
j T T

j N NY g g dx
x

φ
Θ

∂
= Φ ∇Φ

∂∫                                                                                                    (31) 

 

       ( )( , )
N N

j j k l N N
X X ×

×
= ∈ R , ( )( , )

N N
j j k l N N

Y Y ×

×
= ∈ R  , where 1, ,j N= L  

 

( , ) 2 2

T
j T l

j k l kX g g dx
x x

φ φφ
Θ

∂ ∂=
∂ ∂∫  and 

( , ) 1 1

T
j T l

j k l kY g g dx
x x

φ φφ
Θ

∂ ∂=
∂ ∂∫ .  

 
In the same way, q&�L� in equation (21) can be written as 
 

( )( ) ( )T ( ) 2 ( )T ( )
2 ˆ ˆ ˆ ˆi i i i i

Nb u u w w dxγ
Θ

= Φ −∫                             

( ) ( )
2 2

1

1 1

2 2

T
N

ji T T T i
N j N

j

c g g c dx
x

φ
Θ

=

 ∂   = Φ − − ∇Φ     ∂    
∑∫  

2 ( ) ( )
1 12 2

1

1 1

2 2

T
N

ji T T T i
N j N

j

c g g c dx
x

φ
γ

γ γΘ
=

 ∂   − Φ ∇Φ     ∂    
∑∫  
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( ) ( ) ( ) ( )
2 2 1 12

1 1

4 4

T TN N
j ji T T i i T T i

j N N j N N
j i j i

c g g c dx c g g c dx
x x

φ φ
γΘ Θ

= =

∂ ∂
= Φ ∇Φ − Φ ∇Φ

∂ ∂∑ ∑∫ ∫
 

 

( ) ( ) ( ) ( )
2 2 1 12

1 1

4 4

T TN N
j ji T T i i T T i

j N N j N N
j i j i

c g g dx c c g g dx c
x x

φ φ
γΘ Θ

= =

   ∂ ∂
= Φ ∇Φ − Φ ∇Φ      ∂ ∂   
∑ ∑∫ ∫

 
 

( ) ( )
2

1

1 1

4

N
i i

j j j
j

c X Y c
γ=

  = −  
  

∑                                                                                             (32)  

 
By substituting equations (29) and (32) into equation (22) yields; 
 

  
1

( 1) ( ) ( ) ( )
1 12 2

1 1

1 1 1 1

2 4

N N
i i i i

j j j j j j
j j

c A c X Y b c X Y c
γ γ

−

+

= =

       = − − − + −               
∑ ∑                       (33) 

 
Based on equation (33), we can perceive that wV 
and xV  are invariant in each iteration. They can 
be computed once and for all, therefore, we are 
not required to update p�L�  and q�L�  in each 
iteration as in algorithm 2. We use Monte Carlo 
method together with Latin hypercube sampling 
(LHS) to compute integrals p% ,  q% ,  wV  and xV �Y � 1, ⋯ , `� . To estimate integrals over 
multidimensional domains, Monte Carlo 
integration is generally applied. LHS is a uniform 
sampling technique that has small variance. 
McKay et al. [24] was the first to propose LHS as 
a Monte Carlo integration technique. We use wV 
as an example to illustrate this technique. First, 
select �  samples #L ∈ �N � 1, ⋯ , ��  with LHS. 
Then calculate wV with, 
 

( ) ( ) ( ) ( ) ( )2 2
1

1
TH
j i T T

j N i i i N i
i

x
X x g x g x x

H x

φ
=

∂
= Φ ∇Φ

∂∑    (34) 

 
Based on equations (33) and (34), we use 
CESPUA. 
 
Algorithm 3 (CESPUA)  
 
Step 1:  select the independent basis function set 
Φ\�#�, and evaluate p%, q%, wV,and xV  �Y � 1, z, `� 
with the above Monte Carlo integration. Give the 
initial coefficients [�A� such that <t �A� ∈ KA. Let i=0 
 

Step 2:  solve equation (33) for [�LM%�. 
 
Step 3:  set N � N � 1.if P[�L� 
 [�LQ%�P ≤ R  (R  is a 
small positive real number), stop and use [�L� as 
the coefficient for < ∗ (i.e. < ∗ is approximated 

expressed with <∗ � d[�L�e	
Φ\), else go back to 

step 2 and continue. 
 
In CESPUA, so long as the basis functions are 
selected, the integrals  p% ,  q% ,  wV  and xV  �Y �1,⋯,` can be computed off-line directly and 
remain invariant during the iterative process. 
Hence, it is very advantageous in design of 
offline controller. 
 
6. SIMULATION RESULTS 
 
CESPUA technique is used to solve the 
nonlinear missile guidance problem. The model 
described in section 5.2 is used to synthesize 
feedback control laws based on the CESPUA 
algorithm. The variables 4�#�  and *�#�  are 
derived from equations of motion (7a) and (7b), 
therefore the domain of the state values Θ and 

the basis functions   TUV�#�WVX%
\

 need to 

determined. For this missile guidance problem, Θ 
is defined as, 
1300 | }⁄ < #% < 
300|/} , 0 < #& < 300|/} , 0 < #' < 5000| . We select 
basis functions as: 

TUVWVX%
%A � �#%&      #%#&    #%#'    #&&   #&#'   #'&    #%#&#'   #%&#&   #&&#'   #%#'&� 

 
and  @ � 12 . The initial coefficients [�A� � 0 , while the stop criterion R is set as 10Q�. 
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Figs. 2 to 6 show coefficients [%, [&, [', [�, [�, [�, [�, [�, [� and [%A in every iterative step.  
 
The coefficients respectively converge to  
 [ � C0.3855  0.0102   0.0131  0.8604  
 0.0019   0.0000  
 83.4750 
 17.8143  
 71.3399  0.0008 E 	 
 
From the above coefficients the solution of HJI equation is computed by equation (24). The 
corresponding H∞  controller is designed by equation (12). Numerical simulations are performed to 
illustrate the effectiveness of the proposed guidance law.  

 

 
 

Fig. 2. Coefficients c1,c2 obtained by CESPUA 
 

 
 

Fig. 3. Coefficients c3, c4 obtained by CESPUA 
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Fig. 4. Coefficients c5,c6 obtained by CESPUA 
 

 
 

Fig. 5. Coefficients c7,c8 obtained by CESPUA 
 

Case 1:  The initial conditions for engagement 
are chosen as,  
 

0

0

0 0

5000

300 /

300 /

r m

r m s

r m s

=
= −
Ω =

&  

 
And highly maneuvering target with disturbance 
vector, 

70sin(0.5 )

( ) 70sin(0.5 / 4)

70 cos(0.5 )

t

w t t

t

π
 
 = + 
    

Fig. 7 shows the evolution of @ with time. It is 
shown that @  converges to 15.05 �< @& � 144� 
which satisfies the ℒ& 
 gain requirement as 
t → ∞ . 
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From Fig. 8, it is shown that the relative distance 
becomes zero in an instant �d=>e � 0  where => =6.69 sec is the interception time. It is also 
shown that there is no need for relative distance 
to asymptotically converge to zero.  

Its asymptotic convergence means that the 
missile initially approaches the target at a high 
speed; however, near the target; the relative 
speed reduces so slowly that the missile touches 
the target in an infinite time. Such behaviour is

 

 
 

Fig. 6. Coefficients c9,c10 obtained by CESPUA 

 

 
 

Fig. 7. Evolution of gamma ��� with time 
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not desirable in missile guidance in which the 
missile should hit the target with non-zero speed 
in a finite time. Figs. 9 and 10 show the 
tangential relative velocity and radial relative 
velocity. The tangential relative velocity 

asymptotically converges to zero while the radial 
relative velocity asymptotically converges to a 
negative value ensuring the missile intercepts the 
target. Fig. 11 shows the guidance command 
(control command) of the missile. 

 

 
 

Fig. 8. Relative distance between the missile and t he target 
 

 
 

Fig. 9. Tangential relative velocity 
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Fig. 10. Radial relative velocity 

 

 
 

Fig. 11. Guidance command 
 
Further simulations were conducted with 
variation of initial conditions chosen as, 
 

Case 2: 

0
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=
= −
Ω =

&

 

Fig. 12 show the relative distance between the 
missile and target for initial condition in case 
2.the interception time is 10.35 sec. Figs. 13 and 
14 show the tangential relative velocity and radial 
relative velocity respectively. The proposed 
guidance law show robustness against variation 
of initial condition. 
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The proposed H∞ guidance law is compared to 
the sliding mode guidance law presented by the 
following command [8] 
 

rV V V
u asat

r
θ θ

ε
 = − +  
   

Where Vθ  is tangential velocity, 30a =  and 

1ε = . 
 
a) Comparison of Tracking Errors and Final 

Time 
 
Our design objective is to develop an effective 
guidance law to keep the LOS angular rate and

 

 
 

Fig. 12. Relative distance between the missile and the target 
 

 
 

Fig. 13. Tangential relative velocity 
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relative distance as minimal as possible under 
uncertain target accelerations. In Fig. 15, the 
relative distances for the H∞  guidance law 
converges to zero faster than that of sliding 
mode law.  

In Fig. 15 the interception time for the two 
guidance laws are 6.69 sec and 6.98 sec 
respectively. While in Fig. 16, interception time is 
10.35 sec and 11 sec respectively. From Fig. 17, 
it can be shown that the tangential velocity

 

 
 

Fig. 14. Radial relative velocity 
 

 
 

Fig. 15. Relative distances between the missile and  target of )∞ law and sliding mode law for 
initial conditions in case 1 
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converges to zero rapidly for the H∞  law 
compared to the sliding mode law. This reveals 
that the H∞  guidance law possesses excellent 
tracking ability and it is possible to attain              
smaller missed distances than that of sliding 
mode law. 
  
b) Robustness 
 
Two types of target maneuvers investigate 
robustness for the presented guidance law. In 
accordance with the definition of the      
performance robustness index, a robust 
guidance law ought to keep the engagement 
performance less sensitive to external 
disturbances. That is, the acceleration 
commands of the target. 
 
In Fig. 15, the missile acceleration command           
is; 
 

70sin(0.5 )

( ) 70sin(0.5 / 4)

70cos(0.5 )

t

w t t

t

π
 
 = + 
  

 

While in Fig. 16 the missile acceleration 
command is  
 

200sin(0.25 )

( ) 200sin(0.25 /6)

200cos(0.25 )

t

w t t

t

π
 
 = + 
    

 
From Figs. 15 and 16, the interception time for H�  guidance law is less than that of sliding 
mode law. Therefore, for different initial 
conditions, H�  guidance law is more robust to 
uncertain target maneuvers (accelerations) than 
sliding mode law.  
 
c)  Comparison of Control Efforts 
 
The control commands for both guidance laws 
are shown in Fig. 18. The guidance                
command for sliding mode law is larger than that 
of H_∞ guidance law. Larger acceleration 
commands lead to higher energy (fuel) 
consumption. Therefore, concerning energy 
consumption, H_∞ guidance law yields better 
results. 

 

 
 

Fig. 16. Relative distances between the missile and  target of )∞ law and sliding  
mode law for initial conditions in case 2 
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Fig. 17. Tangential relative velocities for )∞ law and sliding mode law with initial conditions o f 
case 1 

 

 
 

Fig. 18. Guidance commands for )∞ law and sliding mode law with initial conditions o f case 1c  
 

7. CONCLUSION 
 
In this work, the nonlinear H∞  guidance law is 
presented through application of H∞  theory into 
the equations of 3-D relative motion. The 

guidance problem is considered as a nonlinear 
disturbance attenuation control problem by 
regarding target accelerations as unpredictable 
inputs. By using MPC, nonlinear relative motion 
equations of the target and missile only contain 
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three state variables instead of six state variables 
used in polar coordinates leading to a less 
complex HJI equation. SPUA is used to solve the 
HJI equation where the disturbance and control 
policies are simultaneously updated. SPUA 
avoids solving the HJB equations because the 
HJI equation is directly successively 
approximated by a sequence of Lyapunov 
function equations. This results to one interactive 
loop instead of two. Hence, SPUA is much 
simpler and easier to implement than other 
existing methods. Galerkin’s method is used to 
solve the LFEs and derive GSPUA. CESPUA is 
used to compute all the integrals at once. 
Furthermore, Monte Carlo integration is used 
together with LHS to evaluate all integrals, which 
further improved the efficiency of the CESPUA.  
The proposed H∞ guidance law proved that, it not 
only satisfies the H∞  robust stability but also 
obtains better performance and avoids control of 
relative velocity. An illustrative example is 
proposed to demonstrate the effectiveness of the 
developed guidance law. Compared with the 
sliding mode law, numerical simulations indicate 
that the H∞ guidance law consumes less control 
energy, has reduced interception time, excellent 
tracking ability and offers better performance 
against uncertain target accelerations. 
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