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ABSTRACT
A major factor driving changes in land use and land cover (LULC)
is the human population growth associated with an expanded
agricultural production. In the Lambwe valley in Homabay
County, Kenya, the most important reason for accelerated popula-
tion growth in the last decades was the control of the tsetse fly,
the biological vector of trypanosomiasis. The goal of our study is
to quantify the changes of LULC in the Lambwe valley in the last
30 years, giving special attention to the Ruma National Park. We
classified three Landsat images of the Lambwe valley from 1984,
2002, and 2014 by Random Forests. The Ruma National Park itself
showed a diverse composition probably supported by frequent
fires that lead to a short-term reduction of savanna. Nevertheless,
the national park is well protected, and no profound changes
could be observed. Outside the national park, agricultural area
increased by about 12%, savanna and the dense forest, that
used to grow at higher altitudes, decreased by about 8% and
6%, respectively. In particular, agriculture expands towards higher
altitudes with steeper slopes thus leading to a larger risk of soil
erosion.

ARTICLE HISTORY
Received 5 July 2018
Accepted 30 December 2018

1. Introduction

Worldwide, ecosystems are changed by humans. An essential factor contributing to this
change is the growing human population associated with the increased need for food
and agricultural land to produce it. Since land suitable for food production is limited,
agriculture is often expanded into areas less favourable for cultivation which can lead to
land degradation.

Not only terrestrial but also aquatic ecosystems like lakes can be affected by expand-
ing agricultural activities. Indeed, an increasing input of sediments, nitrogen, and
phosphorous originating from agriculture can lead to eutrophication. Worldwide,
numerous lakes are endangered; one example being Africa’s largest lake, the Lake
Victoria. Its basin is one of the most densely populated areas in Africa with
a population growth rate of 3–4% in 2015 (United Nations, Department of Economic
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and Social Affairs, Population Division 2017). In the lake, the enormous growth of
invasive aquatic plants points to the evolving eutrophication and is an important factor
for a change of the lake’s ecosystem (Juma, Wang, and Li. 2014; ILEC 2005).

Protected areas situated in regions with a rapidly growing population, like the Ruma
National Park in Lambwe valley, adjacent to Lake Victoria, are under particular pressure.
Land use intensification in the surroundings can lead to conflicts between local com-
munities and the protection goal (DeFries et al. 2007). An important step to develop
useful strategies to reduce such conflicts is the detailed knowledge of the changes of
land use and land cover (LULC) in the surrounding area.

One method to detect changes in LULC is the analysis of time series of satellite
images, which allows to identify breakpoints or gradual changes. Yet, in many areas, this
method cannot be used for extended time spans because of lack of data. Indeed, the
only (now freely available) long time series of higher resolution satellite images, namely
the Landsat imagery, show gaps between 1984 and 1999 all over the world, especially in
Africa. This is caused by the commercialization of the Landsat data during this period
resulting in many missed observations due to the lack of ‘obvious and immediate
buyers’ (NASA n.d.).

A straight forward method to detect changes between satellite images is the post-
classification comparison, where single images instead of time series are compared after
being classified individually (e.g. Bayarsaikhan et al. 2009). One main advantage of this
approach is the reduced influence of atmospheric and environmental differences
between the images (Lu et al. 2004) since the classification into different LULC classes
depends on the single image only. This is especially important when using satellites with
different sensor types like the Landsat imagery. The reliability of the post-classification
comparison depends essentially on the classification accuracy of individual images.

Although some older studies based on aerial photographs exist (Muriuki et al. 2005),
recent systematic assessments of LULC changes in Lambwe valley are missing. The rate
and patterns of land use change are good indicators of long-term conditions of natural
environments (Fox et al. 1995) and provide crucial information regarding ecological
processes and ecosystem stability. This is an invaluable information needed for
a sustainable management of natural resources. In this study, we investigate the effects
of the increasing human population on the LULC during the last 30 years, since Ruma
obtained its status as a national park. In particular, we want to know which parts of the
valley changed the most. Thereby, we evaluate whether the need for food production is
getting in conflict with the need of protection, namely the protection against soil
erosion on steeper slopes and the protection of biodiversity in the Ruma National Park.

2. Material and methods

2.1. Study area

Our study area is located in Lambwe valley at the Lake Victoria in southwestern Kenya
(027ʹ–047ʹ S and 3406ʹ–3424 ‘E) at an elevation of 1,107 m above sea level. It covers an area
of 561 km2 and was originally a dense forest, at least on the hills (Allsopp and Baldry 1972;
Njoka et al. 2003). It lies between the Kanyamwa escarpment and Gwasi and Gembe hills.
The Ruma National Park, fenced in 1971, occupies the centre of the valley and covers an
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area of approximately 120 km2 (Allsopp and Baldry 1972). Human settlements with
domestic livestock are scattered around the park. To reflect different land uses in our
study area we divided it into four subregions, namely the national park, the western,
northern, and southern regions (Fig. 2.1). The national park shows a sharp boundary to
its surroundings, and the western region contains the Gwasi hills and their foothills.

The park was established in 1966 as a game reserve to protect the last sanctuary of
the Roan antelope (Hippotragus equinus) in Kenya. In 1983 it got the status of a National
Park (Muriuki et al. 2005; Awange, Aseto, and Ong’ang’a 2004). Until the 1960s, the
tsetse fly (Glossina) infestation kept humans and grazing livestock out of the valley,
allowing the forest and its rich biodiversity to flourish. The tsetse fly is a vector of
trypanosomiasis, the sleeping sickness, which affects humans and livestock. In humans,
it can be fatal if not treated and treatment requires specifically skilled staff (World Health
Organization n.d.). In livestock, the disease leads to reduced birth and increased mor-
tality rates (Muriuki et al. 2005). Starting in the 1960s, the tsetse control programs using
traps and selective bush clearing were initiated by the Kenyan government and the
World Health Organization and have opened up the area for human settlement (Muriuki
et al. 2005). As a consequence, between 1960 and 1970 the population more than
tripled (Wellde et al. 1989).

2.2. Landsat images and their preprocessing

For our study, we used three Landsat surface reflectance images downloaded from
the EarthExplorer (U.S. Geological Survey n.d.) on 17 May 2016 with a resolution of
30 m � 30 m. They were acquired by L5 TM on 10 September 1984, by L7 ETM on
4 September 2002 and by L8 OLI/TIRS on 15 September 2014. The time intervals are
quite wide and unequal because (1) only a few images are available for the
1990s and (2) we chose images with a minimal cloud contamination and avoided
Landsat 7 images collected after 31 May 2003 that are affected by the scan line error.
In addition, we restricted the analysis to images that were acquired in approximately
the same period of the year to enhance comparability.

The blue band of the Landsat image of 2014 shows some artefacts. They are most
obvious in the western part, outside our study area (see linear boundaries of colour
changes in Figure 1), yet they are also found inside the study area. Therefore, we
decided to exclude the blue band in all images from further analysis.

The surface reflectance data produced by the Earth Resources Observation and Science
(EROS) Center are already atmospherically corrected. We applied three further corrections
before analysis, namely (1) masking of water and clouds using the cfmask band, (2) image
registration and (3) topographical correction because the study area is hilly and this affects
the illumination of the Earth surface. For the last step, we chose the Minnaert method with
slope correction (Goslee et al. 2011) and used the ASTER digital elevation model (ASTGTM2
S01E034), which we resampled to match the resolution of the Landsat images.
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Figure 1. In left upper area: location of the Lambwe valley in Kenya. Study area with the Landsat
image of 2014 in the background, showing the subregions used in the analysis.
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Figure 2. Examples of 300 m � 300 m patches of LULC classes. (a): agriculture, (b): savanna,
(c): dense shrub, (d): light forest, and (e): dense forest. WorldView-1 images, courtesy of DigitalGlobe
Foundation.
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2.3. Choosing the training data

In this study, we classified LULC with Random Forests (RF) (Breiman 2001), a classifier
often used in remote sensing. It has been reported to perform best over a wide variety
of data sets (121 data sets, with RF surpassing 90% of the maximum accuracy in 84% of
the data sets) (Fernández-Delgado et al. 2014). A major challenge in classification is the
acquisition of reliable training data. In particular for historical images, it is not always
possible to get direct information about past LULC. To overcome this issue, we inferred
past LULC classes from unchanged areas in recent satellite images. For defining
unchanged areas we used the change-vector analysis (Bovolo, Marchesi, and Bruzzone
2012). We have already tested this approach in the Matobo National Park in Zimbabwe
(Scharsich et al. 2017).

For 2014 we could identify training data from WorldView-1 high-resolution images
(0.5 m � 0.5 m) provided by the DigitalGlobe Foundation and from own field visits. The
training data for 2002 and 1984 were derived by transferring class labels of unchanged
pixels (see below for details) from 2014 to the corresponding pixels in the older images.

2.3.1. Training data for 2014
To infer the training data for 2014 we identified fivemain LULC classes in the Lambwe valley
based on field visits and visual interpretation of WorldView-1 high-resolution images:

agriculture contains fallow land and cropped land
savanna dominant in the National Park, far from the river
dense shrub dominant in the National Park in the vicinity of the river
light forest dominant on the hills
dense forest exists only on the top of the hills

For each of these five classes, we identified in the WorldView-1 high-resolution
images 1000 pixels and used them as training data for the classification of the Landsat
image of 2014.

2.3.2. Selection of predictors
Our first classification results (data not shown) suggested that the spectral information
contained in the Landsat images (bands 2–5 and 7 for Landsat 5, and 7 and 3–7 for
Landsat 8) could be insufficient to classify LULC in the study area accurately. Indeed, the
agricultural land is highly fragmented and fallow fields covered by grass can be easily
confounded with savanna. Therefore, we derived further predictors for the classification,
namely two vegetation indices, NDVI and EVI, altitude, slope, aspect, and features
derived by mathematical morphology.

Since we decided to avoid the blue band in Landsat images (contaminated by
artefacts, see section 2.2) we calculated the two-band EVI as follows:

EVI ¼ 2:5
N� R

Nþ 2:4Rþ 1
; (1)

where N is the near-infrared band and R the red band, respectively. Jiang et al. (2008)
showed this to be an appropriate way to replace the information of the blue band and
obtain results comparable to EVI values calculated with the blue band.

6724 V. SCHARSICH ET AL.



The altitude, slope, and aspect were calculated from the resampled aster digital
elevation model. This information should facilitate the classification of dense forest and
light forest since they are dominant at a higher elevation.

Predictors derived by mathematical morphology allow to take neighbourhood rela-
tionships of pixels into account and find specific shapes in an image. Because the
agricultural area consists of rectangular fields, we chose a 3 � 7 rectangle as
a fundamental structural element and applied a closing operation to Landsat bands,
NDVI and EVI:

closingðbðpÞÞ ¼ erosionðdilateðbðpÞÞ ; (2)

where

dilateðbðpÞÞ ¼ maxpi2w3�7ðpÞbðpiÞ

erosionðbðpÞÞ ¼ minpi2w3�7ðpÞbðpiÞ ;
where w3�7ðpÞ is the set of pixels contained in a 3 � 7 pixels window (structural element)
around a pixel p and bðpÞ is the corresponding band with the surface reflectance or
vegetation index value. We used closing to separate savanna from agriculture, in particular,
the fallow land, effectively. In summary, we used 17 predictors for classification, namely five
surface reflectance bands, EVI, NDVI, altitude, slope, aspect, and seven predictors by apply-
ing mathematical morphology to the five surface reflectance bands, NDVI and EVI.

2.3.3. Training data for 2002 and 1984
We obtained reliable training data by transferring the LULC class labels between pixels
of a recent image to older ones under two conditions. First, the LULC class in 2014
should be certain. Second, the pixel’s class should remain the same between images.
The first condition can be verified by using the probabilities that the RF classifier
attributed to different LULC classes. For the second condition we measured the degree
of change by calculating the length of the change vector ρ:

ρ ¼
XB
b¼1

ðXb;2 � Xb;1Þ2
 !1=2

; (3)

where Xb;i is the surface reflectance of band b in image i and B is the number of bands
compared in the two Landsat images (Bovolo, Marchesi, and Bruzzone 2012). We
compared images in 1984 with 2014 and in 2002 with 2014.

We defined 1000 training pixels for each LULC class in 1984 and 2002 in several steps
and took pixels satisfying the following criteria:

(1) The classifier voted with at least 90% for the LULC class.
(2) The change vector ρ is smaller than the 10%-quantile of the distribution of all

change vectors.

If at least 1000 pixels satisfied these criteria, we selected 1000 pixels randomly. If not,
we selected 1000 pixels satisfying:
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(1) The classifier voted with at least 60% for the LULC class.
(2) The change vector ρ is smaller than the 25%-quantile of the distribution of all

change vectors.

The similarity of the training data calculated by the proximity measure of RF can be
used as a marker for the quality of the training data. The proximity is calculated for each
pair of training samples by counting the frequency they both end up in the same node
of the trees of RF (Breiman 2003). In our training data, the similarities within each LULC
class are two order of magnitudes higher than the similarities between different LULC
classes (see Supplementary Material, Section 2.1) for each of the three years. This shows
the suitability of our training data sets. Only data points belonging to the same LULC
class show strong similarities, whereas data points of different origin are dissimilar.

The training data for 1984 and 2002 were used for classification with RF in the same
way as the training data for 2014.

2.4. Classification of land use and land cover

Weused 1000 training pixel for each LULC class to train an RF classifier for each year separately.
The trained RF was used to classify all remaining pixels (about 610,000) of the corresponding
images. To run the RF classifier it is necessary to set three parameters, namely the number of
predictors sampled randomly at each tree node from the set of possible predictors (mtry), the
minimal size of the terminal nodes (nodesize) and the number of trees in the forest (ntree). We
used for all parameters the standard values, which were mtry ¼ 4 (i.e. the square root of
possible features) (Breiman 2003) ntree ¼ 1000 and nodesize ¼ 1. An overfitting of RF is hardly
possible and, as long as ntree is large enough, the variability of its performance is quite low for
low dimensional data (Breiman 2001; Strobl, Malley, and Tutz 2009).

Subsequently, we used the classified images for a post-classification comparison. This
method allows us to understand specific changes in different subregions of our study
area pixel by pixel. The interpretation of the results of this method is quite intuitive and
easy to communicate.

2.5. Determining the accuracy of the classification

To assess the accuracy of our classification we used a fivefold stratified cross-validation that
we repeated 20 times. Stratification means that in each sampled subset the proportions of
LULC classes were equally distributed. For this purpose, we divided the training data into five
parts. With each part once left out as a test set, the other four parts were used to train the RF.
Thus, we obtained the classification error for each pixel and could calculate the accuracy. By
repeating it 20 timeswe could infer amedian classification accuracy (1-classification error) and
its standard deviation. The classification accuracy (c) was calculated by:

c ¼

P5
j¼1

nj;j

P5
k;j¼1

nk;j

(4)
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wheren ¼ ðnk;jÞ is the (5� 5)-confusionmatrix. This matrix provides the number of pixels in
predicted classes (rows) versus given classes (columns). This means, the diagonal elements
display correctly classified pixels, and the rest of the matrix shows misclassified ones.

In addition, we calculated the median of the per-class effectiveness (e.g. Sokolova and
Lapalme 2009) to evaluate whether some LULC classes were better identified than
others. It is defined as

Ei ¼

ni;i þ
P5

k; j ¼ 1
k; j�i

nk;j

P5
k;j¼1

nkj

(5)

where Ei is the per-class effectiveness for one of the five LULC classes i (i = 1, ..., 5), and
n ¼ ðnk;jÞ the confusion matrix as in Equation (4).

Following Pontius and Millones (2011) we decided to avoid the commonly used κ,
which is more ‘redundant and misleading’ than helpful, and instead, calculated the
median of the two error measures ‘allocation disagreement’

A ¼
XJ
g¼1

min
XJ
i¼1

pi;g

 !
� pg;g;

XJ
j¼1

pg;j

 !
� pg;g

" #
(6)

and ‘quantity disagreement’

Q ¼ 1
2

XJ
g¼1

XJ
i¼1

pi;g

 !
�

XJ
j¼1

pg;j

 !�����
����� (7)

where p ¼ ðpi;jÞ is the estimated population matrix. Because we sampled each class
equally, it can be calculated as

pi;j ¼ ni;j
J
PJ

j¼1 ni;j
; (8)

where J is the number of determined clusters (J ¼ 5 in our case) and n ¼ ðnk;jÞ the
confusion matrix as in Equation (4).

These error measures sum up to the error of the classification and describe its
different aspects. The quantity disagreement explains the error caused by an under- or
overestimation of the total number of pixels belonging to the LULC classes, whereas
the allocation disagreement sets the portion of LULC classes as given and evaluates
only the error by suboptimal assignment of the LULC classes to the pixels. With these
two different error measurements, it is possible to decide separately, whether single
pixel-to-pixel changes and/or changes of portions of LULC classes are classified
reliably.

In addition to the classification accuracy, we calculated the (b-ary) Shannon Entropy H
(Shannon 1948) for each pixel x to derive a measure for the internal model accuracy as
used by Hengl et al. (2017), for example. It is calculated by:
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HðxÞ ¼ �
X5
k¼1

pkðxÞ � log5ðpkðxÞÞ ; (9)

where pk is the probability of the pixel x to belong to LULC class k, which corresponds to the
frequency of votes in RF. The logarithm to base 5 is used to constrain H 2 ½0; 1�. H indicates
how certain the RF classifier was about the attributed LULC class. In case of a very sure
classification, all trees of RF voted for the same LULC class and the Shannon Entropy Index is
equal to zero. In case of an equal distribution of the votes among all LULC classes,H equals 1
indicating a maximum of uncertainty for the attributed LULC class.

All calculations were done in R (R Core Team 2016). For georeferencing and topo-
graphical correction we used the add-on package landsat (Goslee et al. 2011); for
resampling the add-on package raster (Hijmans 2016); for the methods of mathematical
morphology the add-on package mmand (Clayden 2017) and for classification the add-
on packages randomForest (Liaw and Wiener 2002) and caret (Kuhn 2016).

3. Results

3.1. Classification accuracy

The classification results for all three Landsat images are reliable since the median
classification accuracy for each of them is high (>97%) and its standard deviation low
(<0:2%) (Table 1). In addition, for each LULC class, the per-class effectiveness is over
99%, except for agriculture and savanna in the year 1984 (about 97%). This points to the
problems we had in differentiating these two LULC classes (see Section 2.3.2).

Since the classification accuracy is high, the errors quantity disagreement Q and
allocation disagreement A are low. In any of the three years A represents at least 70%
of the error of the classification, so the error of assigning single pixels to a wrong LULC
class, given the proportions of LULC classes, is more prominent than the error concern-
ing the prediction of the proportions itself.

Table 1. Median classification accuracy from the fivefold cross valida-
tion (20 repetitions) with standard deviations in parenthesis. Ei: per-
class effectiveness for agriculture (i ¼ 1), dense forest (i ¼ 2), savanna
(i ¼ 3), dense shrub (i ¼ 4) and light forest (i ¼ 5), c: classification
accuracy, Q: quantity disagreement and A: allocation disagreement.

1984 2002 2014

c (%) 97.91 (0.11) 99.28 (0.04) 99.72 (0.02)
E1 (%) 97.98 (0.16) 99.65 (0.03) 99.58 (0.03)
E2 (%) 99.39 (0.06) 99.39 (0.06) 100 (0.01)
E3 (%) 97.02 (0.15) 99.61 (0.02) 99.64 (0.04)
E4 (%) 99.37 (0.07) 99.31 (0.06) 99.99 (0.01)
E5 (%) 99.71 (0.07) 99.85 (0.01) 99.89 (0.03)
Q (%) 0.62 (0.07) 0.18 (0.03) 0.04 (0.02)
A (%) 1.46 (0.12) 0.54 (0.04) 0.24 (0.02)
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3.2. Land use and land cover maps

We found that certain LULC classes were prominent at specific elevations (Figure 3) as
already indicated in their description (Section 2.3.1). Whereas the dense forest prevails at
the highest altitude, the light forest is prominent on the lower hills. Outside the national
park, the agriculture dominates the lower part of the valley. In the national park, savanna
and dense shrub are the most frequent LULC classes. The latter can be found especially
along the river.

To give an impression of how certain the RF classifier was about the LULC class in
each pixel, we calculated the Shannon Entropy Index H for all three years (Figure 4).
Note that H differs from the accuracy of the classification and reflects the distribution of
the votes of the single decision trees inside RF. For a detailed look on the probabilities of
RF for each pixel, see the Supplementary Material, Section 1.1.

Comparing Figures 3 and 4 we observe large values of H especially in regions with
a highly structured LULC. These are not only regions with mosaic-like patterns of
different LULC classes but also the transitions between LULC classes, for example from
dense shrub to savanna in the national park. Often, these regions coincide with areas of
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Figure 3. Study area in 0°27'–0°47' S and 34°06'–34°24' ‘E; (a): Elevation data (aster) in m, (b)–(d):
Spatial distribution of five LULC classes in the study area for the years 1984, 2002 and 2014. The
corresponding LULC classes are 1: agriculture, 2: savanna, 3: dense shrub, 4: light forest and 5: dense
forest. The black lines show the boundaries of the national park and the subregions.
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LULC change. This indicates that a changing area or an area of transition might contain
characteristics of different LULC classes. Thus, the RF classifier that bases its final decision
for a LULC class on a majority vote could still contain information on the minor LULC
classes in the distribution of the votes of single decision trees.

3.3. Changes in Ruma National Park and subregions

The general change patterns in the Lambwe valley can be inferred from Figure 3 already.
One of the prominent changes is the decrease of dense forest in the western region
where it was pushed to the highest elevations. Similarly, light forest also retreated to
higher altitude. Savanna and dense shrub disappeared in the southern region that is now
dominated by two LULC classes, namely agriculture and light forest. The same change
can be observed along the shore, where savanna almost vanished until 2014. In contrast,
the changes in the Ruma National Park are quite diverse and do not follow a clear
pattern.

To get a more detailed overview of the changes we calculated the differences
between the proportions of LULC classes for all three possible combinations of the
LULC maps (Figure 5). The exact numbers can be found in the Supplemental Material,
Section 2.2. The national park stands out with its highly dynamic LULC. The main reason
for the variation is probably fires occurring frequently. Indeed, 30 fires were detected in
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Figure 5. Differences of proportions of LULC classes between the three years 1984, 2002 and 2014
for the national park and the three subregions.
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2008 and 57 in 2009 (Kariuki et al. 2012). The LULC class agriculture, detected in the
national park, probably shows a misclassification of former burned areas. We examined
the original Landsat images (bands: blue, green, red) visually in the areas classified as
agriculture and they fit the expected black impression of burned land. The origin of the
fires is diverse; some of them are accidental and caused by farmers who prepare their
fields before the planting season by burning the farm litter, for example. However, some
fires are started on purpose, mainly by poachers, who know about the subsequent green
flush and its attractiveness to grazers (Kariuki et al. 2012). The only stable development
in the national park seems to be the increasing proportion of light forest (1984–2014:
þ 8:8%) and the decrease of dense forest (1984–2014: � 8:3%).
In contrast to the national park, all subregions surrounding the park have one main

change in common, namely an increase of agriculture and a decrease of savanna. This
development occurred between 1984 and 2002 mainly, probably caused by the strong
population growth in this time. The northern regions were already dominated by
agriculture and savanna in 1984. Thus, the main changes there concerned these two
LULC classes (þ 8:7% and � 14:7% for agriculture and savanna, respectively). By con-
trast, in the southern and the western subregions, the proportions of the other LULC
classes also changed.

The changes in the southern subregion occurred between 1984 and 2002 mainly and
consist of an additional decrease of light forest (� 11:4%). The loss of light forest is
concentrated on the central hill of the subregion, whereas the loss of savanna
(1984–2002: � 7:3%) is located in the southern end of the national park. In 1984 the
vegetation types of the national park continued outside the borders, following the river.
In 2002 this vegetation, mainly dense shrub, still existed in parts. By contrast, in 2014
hardly anything remained and the limits of the national park constitute a sharp border
(Figure 3).

For the western subregion, dense forest is an additional important factor. While parts
of the new agriculture area (1984–2002: þ 11:1%) is gained by savanna losses
(1984–2002: � 3%), the main part is contributed by decreasing dense forest
(1984–2002: � 6:1%). Between 2002 and 2014 we could find an additional develop-
ment. Although changes in agriculture and savanna are rather negligible, there is
a tendency of dense forest (2002–2014: � 8:3%) being replaced by light forest
(2002–2014: þ 5:8%). We attribute this to the proximity of dense forest to intensively
used areas (i.e. agriculture). Therefore, the influence on the forest by collecting firewood,
for example, increases and results in a conversion to light forest. In summary, we see an
increase of agriculture starting in the lower part of Lambwe valley where it replaces
savanna, and continuing by climbing up the hills where it causes deforestation in light
forest. These changes are accompanied by a conversion of dense forest to light forest.

4. Discussion

Today’s population in the Lambwe valley is around 60,000 (The World Vision, personal
communication). Comparable historical numbers are lacking because the Lambwe valley
does not represent a defined administrative district and calculations based on censuses
are not comparable. However, the published population growth rates can be used to
give an impression of the development in this region (Muriuki et al. 2005). In the 1960s
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the population grew fastest (7.2%), mainly induced by a settlement initiative of the
Kenya Government and initiatives to control the tsetse fly as reported by the same
authors. This rapid population increase, rich soils and climatic conditions favourable for
agriculture in the valley have promoted intensive agricultural practices. Indiscriminate
clearing of forests to create land for settlement, crop production and cattle grazing has
followed, leading to serious environmental degradation and species losses (Njoka et al.
2003). Thus, the successful control of the tsetse fly opened up an area with fertile soil;
however, it also led to an increased pressure on the whole valley.

An overview of the conversion from natural to anthropogenically dominated ecosys-
tems is depicted in Figure 6. The vegetation of the Ruma National Park can be seen as
the former main land cover type in the valley, whereas the forest with diverse tree
species represents the original vegetation on the hills. By cattle grazing and forest
burning the land changes and is now often threatened by erosion, leading to a higher
sediment load in the river and contributing to water quality issues in Lake Victoria.

Figure 6. Overview of some ecological processes occurring in Lambwe valley.
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Muriuki et al. (2005) reported that between 1948 and 1993, land under cultivation
increased by about 22% to reach about 32%, whereas grasslands and woodlands
decreased. Although we defined our LULC classes differently from their study, the overall
increase of agricultural areas seems to continue. Indeed, we observed a decrease of
savanna (� 8%) and dense forest (� 6%) in favour of agriculture (þ 12%) between 1984
and 2014 outside the national park.

Ruma National Park is situated in the middle of the Lambwe valley covering about
120 km2 and, therefore, occupying potential land for cropping. This land use conflict
decreases the acceptance of the park by the local communities. Thus, there have been
attempts to degazette the park and to convert it to settlement and agricultural land
(Kariuki et al. 2012). Further reasons for conflicts are the prohibition of collecting fire
wood and hunting game in the national park. In addition, the park acts as a habitat and
dispersal centre for tsetse flies, as well as a refuge for trypanosomiasis among the wild
animals, from where tsetse flies spread and attack livestock (Muriuki et al. 2005).

There is no evidence of illegal agricultural activities in the national park, however,
poaching and illegal collection of fire wood still occur despite the fact that the park is
almost entirely fenced (Kariuki et al. 2012). The growing population could also have an
indirect impact on the park. With extending agricultural activities towards the park
borders (Figure 3), the frequency of fires in the national park could increase, given
that farmers often rely on fire to clear litter and debris in preparation for cropping. To
reduce accidental fires, the park management regularly installs fire breaks along the park
boundary, in addition to increasing awareness through education among the local
communities (Kariuki et al. 2012). The goal of the park management is to follow
a predefined burning schedule, which sustains the open grasslands and also promotes
the encroachment of woody vegetation and bushland. The latter is important for several
grazer communities, especially the roan antelope, for which the Ruma National Park is
the last sanctuary in Kenya. Roan antelope prefers the boundary between savanna and
shrubland/woodland as habitat (De 1974).

In general, an increase in the agricultural area and in particular the expansion of
agriculture (including pasture) towards steeper hill slopes can lead to soil and
vegetation degradation (through overgrazing, for example) and soil erosion. During
the rainy periods, large volumes of rich top soil can be eroded and washed into the
rivers and eventually into Lake Victoria (Figure 6). For the Lambwe valley, the con-
sequences are already noticed by local communities, who observe an increase in the
degraded areas that are now unsuitable for any agricultural use. This is in line with
our observations. Indeed, we found locations with bare land, probably caused by soil
erosion, on the WorldView-1 images. Turbidity and influx of nutrient loads affect the
water quality in Lake Victoria and its biodiversity and increases the pressure on the
endemic species and the ecological structure in the lake. Eutrophication as a result of
influx of nitrogen- and phosphorus-rich soils is one of the consequences, while
invasive species such as water hyacinth (Eichornia crassipes) have taken advantage
of the fertile lake waters (ILEC 2005).

Njoka et al. (2003) reported that outside Ruma National Park, essential ecosystem
services such as water availability, soil quality and biodiversity have decreased signifi-
cantly. Also, valuable tree species have vanished from the area due to over-exploitation,
while soil erosion, soil degradation and river siltation were on the rise. Our study
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quantifies the recent LULC changes and shows that agricultural expansion continues on
steeper slopes. Ruma National Park seems to be well protected and probably still fulfils
its purpose of protecting biodiversity despite the lack of acceptance among the neigh-
bouring communities. This negative attitude towards the park could flame conflicts in
the future, particularly, if the pressure to find cultivable land continues to increase.

5. Summary and conclusions

In this study, we investigated changes of LULC in and around Ruma National Park in
Kenya situated in Lambwe Valley near Lake Victoria. We classified three Landsat images
with a time span of 30 years with a supervised classification algorithm using high-
resolution images of WorldView-1 to create training data. Inside the national park, we
did not observe any change of LULC that could be attributed to illegal practices. This is
likely because of the perimeter fence around the park and the effective surveillance by
the park rangers. Outside the national park, LULC changes point towards a decrease in
dense forest and savanna and an increase in agricultural areas that are now expanding
up the hill slopes. We attribute these changes to the population growth in the Lambwe
valley and thus to a rising demand for food production. Cultivation of steeper slopes
increases the risk of soil erosion, while the ongoing deforestation may lead to
a complete loss of forests at the higher altitudes through conversion into cropping
areas and pasture.
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