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Abstract 

There is increased use and application of exponential random graphs emanating from use of big data and 

other techniques. This study sought to establish how sampling bias affects the exponential random 

graphs. This study was guided by the following objectives: to specify and estimate exponential random 

graph models with biased sampling, to determine the maximum likelihood estimate for family of 

exponential random graphs with sampling bias., to determine the suitable sampling method for 

exponential random graphs and to use the model effect in real life data; a case of opinion polls in Kenya. 

The study used R software for data analysis from IPSOS Synovate on opinion polls of 2017 in Kenya and 

realized that there is an intractable Pseudo likelihood for the family of exponential random graphs which 

was analyzed using the Markov Chain Monte Carlo simulation approach. The study revealed that gender 

and political affiliation affected the voting pattern of a person in an election at a rate 90.07% and 95.72% 

respectively. The study recommends use of Metropolis Hastings Monte Carlo simulation in handling the 

exponential random graphs. 

 

Keywords: Exponential random graph, exponential random graph model, Markov Chain Monte Carlo, 

exponential family, maximum likelihood estimate 

 

1. Introduction 

Common causes of sampling bias lies in the design of the study or in the data collection 

procedure, either of which may favor or disfavor collecting data from certain classes or 

individuals or in certain conditions. Sampling bias is also particularly prominent whenever 

researchers adopt sampling strategies based on judgment or convenience, in which the 

criterion used to select samples, is somehow related to the variables of interest. For example, 

in opinion poll, a researcher collecting opinion data may choose, because of convenience, to 

collect opinions mostly from college students because they happen to live nearby, and this will 

further bias the sampling toward the opinion prevalent in the social class living in the 

neighborhood. 

This procedure is intended to complement the likelihood approach developed by [1] by 

providing a practical means of estimation when the size of the complete network is unknown 

and/or the complete network is very large. We report the outcome of a simulation study with a 

known model designed to assess the impact of initial sample size, population size, and number 

of sampling waves on properties of the estimates. We conclude with a discussion of the 

potential applications and further developments of the approach. As noted by [2], a growing 

availability of network data and of scientific interest in distributed systems has led to the rapid 

development of statistical models of network structure. Typically, however, these are models 

for the entire network, while the data consists only of a sampled sub-network. Parameters for 

the whole network, which is what is of interest, are estimated by applying the model to the 

sub-network. This assumes that the model is consistent, or, in terms of the theory of stochastic 

processes, that it defines a projective family. The class of exponential random graph models 

(ERGMs), that show apparent trivial condition to have been violated by many popular and 

scientifically appealing models, and that satisfying it drastically limits ERGM’s expressive 

power [2]. These study actually uses ERGMs in case where sampling is biased and shows 

whether the parameter to be estimated are consistent as a common property. 
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Estimation of parameters in exponential random graph model, 

also known as the p_ model, using frequentist Markov chain 

Monte Carlo (MCMC) methods is the easiest and most 

accurate method since some likelihood are intractable. The 

exponential random graph model is simulated using Gibbs or 

Metropolis-Hastings sampling. Our study considered 

estimation procedures that are based on the Robbins-Monro 

algorithm for approximating a solution to the likelihood 

equation [3]. One of the major problem with exponential 

random graph models is the fact that such models can have, 

for certain parameter values, bimodal (or multimodal) 

distributions for the sufficient statistics such as the number of 

ties. The bimodality of the exponential graph distribution for 

certain parameter values seems a severe limitation to its 

practical usefulness [4]. in his mathematical analysis of the 

Engel demand model in the exponential form observed 

properties of this exponential model. For the analysis of the 

income-demand elasticity of the developed exponential form, 

the model offers the static hyperbolic function: 

 

𝜂(𝑋𝑡)  =  
17 336.8908

𝑋𝑡
 

 

The derived hyperbolic function of the income-demand 

elasticity falls digressively and the simulated values tend to 

the zero level. In analyzed time period (1995–2000), the 

income-demand reactions were simulated in the elastic form 

with the values from 1.3866 to 1.1340. The average level of 

the analyzed income demand elasticity between the observed 

years reached the value of 1.2121, thus the 1% rise in the real 

level of the quarter households’ incomes per capita led to the 

average increase in the average Czech household’s demand 

for meat and meat products, including fish and fish products, 

of about 1.21%. The study seeks to use exponential model in 

electricity consumption modeling. 

 

2. Methodology 

2.1 Description of Data set used 

The research questions were answered by utilizing the data on 

opinion polls in Kenya that was conducted in 2017 in regard 

to most preferred presidential candidate conducted by IPSOS 

Synovate. The survey assessed the social, economic, cultural 

and political aspects of voters in Kenya in readiness for the 

election. The following items were assessed Voter 

Registration Status, Household Economic Conditions, 

Kenya’s Direction, Security Issues, and Presidential Election 

Vote-Preferences. This are the same item that were evaluated 

during the study. 

 

 

2.2 Model Building 

2.2.1 Estimation of Exponential Random graphs with 

Biased Sample 
[5] and [6] proposed the p_ model for social networks, 

generalizing the Markov graph distribution of [7], also called 

the Exponential Random Graph Model, ERGM; 

 

𝑃𝜃(𝑌 = 𝑦) =
𝑒𝑥𝑝{𝜃𝑡𝑔(𝑦)}

𝑘(𝜃)
         (1) 

 

Where 𝑘(𝜃) = ∑ exp {𝜃𝑡 g(𝑧)𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑔𝑟𝑎𝑝ℎ𝑠 𝑧 } 

𝜃 − is a parameter vector to be estimated 

𝑔(𝑦) −user defined vector of graph statistics 

 

2.2.2 Maximum Likelihood Estimation for the Family of 

Exponential Random Graphs with Bias 

The log-likelihood function is estimated as: 

 

𝑙(𝜃) = 𝜃𝑡𝑔(𝑦𝑜𝑏𝑠) − 𝑙𝑜𝑔𝑘(𝜃)       (2) 
 

MLE maximizes 


 of the likelihood 

Many times likelihood is sometimes intractable. We use 

Pseudo likelihoods which is: 

 

𝑙𝑜𝑔
𝑃(𝑌𝑖𝑗|𝑌𝑖𝑗

𝑐 )

𝑃(𝑌𝑖𝑗=0|𝑌𝑖𝑗
𝑐 )

= 𝜃𝑡[𝑔(𝑦𝑖𝑗
+)] − 𝑔(𝑦𝑖𝑗

−)      (3) 

 

Pseudo likelihoods ignore the conditioning but assume instead 

that; 

 

𝑙𝑜𝑔
𝑃(𝑌𝑖𝑗=1)

𝑃(𝑌𝑖𝑗=0)
= 𝜃𝑡[𝑔(𝑦𝑖𝑗

+)] − 𝑔(𝑦𝑖𝑗
−) ≡ 𝜃𝑡(𝑦)𝑖𝑗  ∀𝑖 ≠ 𝑗   (4) 

 

Pseudo likelihood equals 

 

∏
exp {𝜃𝑡𝜎(𝑦𝑜𝑏𝑠)𝑖𝑗}𝑦𝑖𝑗

𝑜𝑏𝑠

1+exp {𝜃𝑡𝜎(𝑦𝑜𝑏𝑠)𝑖𝑗}𝑖≠𝑗           (5) 

 

The idea is to maximize a penalized likelihood which induces 

a bias in the score function in order to reverse the some of the 

anticipated bias in the maximizer. The penalized likelihood is: 

 

𝑙𝑏𝑐𝜃 = 𝑙(𝜃) +
1

2
log |𝑙(𝜃)|         (6) 

 

The resulting maximizer is also the Bayesian maximum 

posterior estimator based on assigning a Jeffreys prior to the 

parameter. 

 

3. Results 

 
Table 1: Sample Statistics cross correlation 

 

 
Edges gwesp. fixed.0.25 Node match. Political Affiliation Node match. Sex 

edges 1.0000000 0.8346505 0.9572414 0.9006526 

gwesp.fixed.0.25 0.8346505 1.0000000 0.8550279 0.779703 

Node match. Political Affiliation 0.9572414 0.8550279 1.0000000 0.8670579 

Node match. Sex 0.9006526 0.779703 0.8670579 1.0000000 

 

There is a strong positive relationship between all the three 

variables under study. Edges are positively correlated with 

fixed. 0.25 at 83.46%. Edges are positively correlated with 

political affiliation at 95.72% and lastly edges are correlated 

with sex at 90.07%. Political affiliation is strongly, positively 

correlated with sex at 86.71.  
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Table 2: Sample Statistics auto-correlation 
 

 
Edges Gwesp.Fixed.0.25 Node Match.Grade Node match. Sex 

Lag 0 1.00000 1.00000 1.00000  

Lag 8192 0.75502 0.97972 0.81298 0.7670614 

Lag 16384 0.71007 0.96169 0.76126 0.7146167 

Lag 24576 0.68609 0.94487 0.73647 0.6863572 

Lag 32768 0.66649 0.92898 0.71798 0.6666375 

Lag 40960 0.65203 0.91375 0.70313 0.653901 

 

Lagging of the data further resulted in a strong positive 

relationship between the variables. Lagging at 0 the 

coefficient were 100% for all variables respectively. The 

increase in lags resulted in the decrease the correlation 

coefficient. 0.755, 0.71, 0.686, 0.666 and 0.652 

The MCMC sample statistics are varying randomly around 

the observed values at each step (so the chain is “mixing” 

well) and the difference between the observed and simulated 

values of the sample statistics have a roughly bell-shaped 

distribution, centered at 0. The saw tooth pattern visible on 

the degree term deviation plot is due to the combination of 

discrete values and small range in the statistics: the observed 

number of degree 1 nodes is 3, and only a few discrete values 

are produced by the simulations. So the saw tooth pattern is 

an inherent property of the statistic, not a problem with the fit. 

 

4. Conclusions 

ERG models have wide application in network analysis. 

Exponential random graph model (ERGM) of a particular 

parametric form and outline a conditional maximum 

likelihood estimation procedure for obtaining estimates of 

ERGM parameters based on the sampling bias. Exponential-

family random graph models (ERGMs) provide a principled 

and flexible way to model and simulate features common in 

social networks. 

In this project a new approach to estimate sampling bias on 

ERG based on data from political opinion polls is used. The 

model exploited the convenient distributional characteristics 

of ERG models. 

We can use ERGMs to estimate network models using target 

statistics from egocentrically sampled data. The fact that the 

target statistics are reproduced by this model does not 

guarantee. 

That additional feature of the network would also be 

reproduced. But starting with simple models can help to 

identify whether and how the aggregate statistics we observe 

from an egocentric sample deviate from those we would 

expect from the model. 

 

5. Recommendations 

If we take all of the observed statistics without a saturated 

model, we cannot reject the hypothesis that this model 

produced the network we sampled from. 

ERG approach can be used to explore network statistics that 

are not visible but it must always be remembered that the 

distributions we will produce are based on our model. They 

faithfully reproduce the model, but that does not mean that the 

model faithfully represents the population. 

These results show computational algorithms in ERGM use 

MCMC to estimate the likelihood function that is a dependent 

term in the model. The process involves simulating a set of 

networks to use as a sample for approximating the unknown 

component of the likelihood the 𝑘(𝜃) term in the 

denominator. 
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