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Abstract 

Long-term Earth observation based vegetation index records have been used extensively by researchers 

to assess vegetation response to global climate variability and change. However, the records exhibit 

multiple temporal gaps due to spectral and radiometric inconsistencies that inhibit accurate assessment of 

land surface vegetation dynamics. Here, we propose a new reconstruction procedure that approximates 

Bayesian time series model by using integrated nested Laplace approximations (INLA) to overcome 

Bayesian computational limitations. The technique was tested on the vegetation index and phenology 

(VIP) Lab enhanced vegetation index-two (VIP-EVI2) version 3 15-day 5 km resolution record. VIP-

EVI2 is a reconstructed record with inverse distance weighting function and linear interpolation (IDW-

EVI2). VIP-EVI2 is derived from red and near-infrared (NIR) top of canopy (TOC) reflectance, detected 

by the Advanced Very High Resolution Radiometer (AVHRR). The INLA-EVI2 was compared globally 

and locally with an adaptive Savitzky-Golay (SG-EVI2) filter. The global evaluation was done by 

descriptive analysis, goodness-of-fit by Kolmogorov-Smirnov (K-S) test, annual trend analysis by Thiel-

Sen (T-S) slope. The local comparison was done by evaluating the ability of IDW-EVI2, SG-EVI2, and 

INLA-EVI2 to estimate in situ Leaf Area Index (LAI) measurements taken over several years and for 

major field crops across the globe. Locally, INLA-EVI2 estimated the in situ data more correctly than 

SG-EVI2 as indicated by R2 and RMSE. Globally, the INLA-EVI2 recorded a better goodness-of-fit, 

more stable and consistent trends than SG-EVI2. Based on these findings, if computational resources are 

unlimited, the INLA approach provides a viable alternative to standard reconstruction procedures. 
 

Keywords: Advanced very high resolution radiometer (AVHRR), vegetation index and phenology (VIP) 

lab, enhanced vegetation index (EVI), Gap-filling, bayesian inference, integrated nested laplace 

approximation (INLA) 

 

1. Introduction 

The long-term monitoring of global processes and feedbacks is important for assessing the 

impact of climate variability and change on ecosystems (Batista et al, 1997; Weiss et al, 2004) 
[39]. Global vegetation records over the past three decades have facilitated studies dealing with 

global carbon flux, land use/cover change, and crop production estimation (Olsson et al, 2005; 

Xia et al, 2008) [26, 40]. These vegetation records generally consist of the Normalized 

Difference Vegetation Index (NDVI) derived from top of canopy (TOC) visible red and near-

infrared (NIR) reflectance. In general, reflectance is detected by the Advanced Very High 

Resolution Radiometer (AVHRR) pre 2000, which is carried onboard the National Oceanic 

and Atmospheric Administration (NOAA) polar orbiting operational environmental satellites 

and moderate imaging spectroradiometer (MODIS) post 2000, aboard NASA’s Aqua satellite 

(Barreto-Munoz, 2013) [2].  

AVHRR is available for 30+ years, much suited for long-term climate change research studies 

that require going back to the 80’s and 90’s for more accurate global change detection (Brown 

et al., 2006; Marshall et al., 2016) [4, 23]. However, for new studies (2000+), moderate imaging 

spectroradiometer (MODIS) (Fang et al., 2014; Lu et al., 2015) [7, 22] is more recommended 

given its higher spatial, spectral resolution, and ability to eliminate background and 

atmosphere noises. NDVI is developed from a ratio of NIR minus visible red to NIR plus 

visible red to NIR plus visible red. Vegetation cover scatters (absorbs) strongly in the NIR 

(red) producing high NDVI compared to bare soil, which scatters strongly in both the NIR and 
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red (Peñuelas and Filella, 1998) [28]. Aerosols, dust, Rayleigh scattering and partial cloud cover tend to increase reflectance in the 

NIR and lower NDVI, thus requiring additional compositing before interpretation (Holben, 1986) [14]. Major cloud contamination, 

particularly in the tropics, can create numerous gaps in the daily AVHRR records, eliminating approximately two-thirds of the 

data (Justice et al., 1991) [18]. One way to minimize the sensor and atmospheric effects is by using 15-day maximum value 

composites (MVC), however, gaps and inconsistencies persist, often necessitating further gap-filling and smoothing.  

Several long-term vegetation records exist, each with different approaches to standardize NDVI across the NOAA satellites and to 

account for atmospheric contamination and other effects. The Global Inventory Monitoring and Mapping Studies (GIMMS) is the 

most widely used NDVI product and provides long-term global data at 8 km spatial resolution (Fensholt et al, 2006) [8]. GIMMS 

adopts an Empirical Bayesian technique to statistically correct parts of the vegetation record that could be affected by Satellite 

drift and atmospheric contamination (Pinzon and Tucker, 2014; Tucker et al., 2005) [29, 36]. NDVI tends to saturate more in dense 

vegetation and is more sensitive to soil background than enhanced vegetation index (EVI), hindering proper estimation of 

important biophysical parameters such as vegetation fraction and leaf area index (LAI) (Huete et al, 2002; Zhao et al, 2012) [17, 24], 

so a new long-term EVI product has been developed by the Vegetation Index & Phenology (VIP) Lab (Didan, 2014) [6] using 

AVHRR and MODIS data to overcome the limitations of NDVI. Unlike NDVI, EVI does not saturate severely in dense vegetation 

and incorporates a correction term to reduce the effects of soil background. The standard EVI is computed with visible red, NIR, 

and blue reflectance from MODIS. Since blue reflectance is not available from AVHRR, VIP developed a visible red-NIR version 

of EVI called EVI2 (Jiang et al., 2008) [17].  

Unlike GIMMS, the VIP product which is essentially a fusion of AVHRR and MODIS undergoes partial atmospheric correction 

at a daily time step, before it is compositing. VIP-EVI2 and MODIS-EVI are highly correlated and perform better than their 

NDVI counterpart when predicting ground-based LAI (Rocha and Shaver, 2009) [31]. Due to the processing steps, however, VIP is 

less consistent temporally than GIMMS resulting to poor performance in trend analysis (Tian et al., 2015) [35], and has a higher 

bias with ground data as noted in Marshall et al. (2016) [20]. This is due in part to the way VIP-EVI2 was reconstructed using 

inverse distance weighting (IDW) and linear interpolation that tended to suffer from lack of representation of variability 

associated with the averaged values over various regions (Zhang et al., 2014) [40]. Given that the effectiveness of compositing is 

limited, it has been suggested that representing bad-quality records as expressed by quality information with gaps followed by a 

reconstruction could improve the continuity and quality of the vegetation index data (Kandasamy et al., 2013; Pinzon & Tucker, 

2014; Zhou et al., 2015) [19, 29, 42].  

Adaptive Savitzky-Golay (SG), Whittaker-Henderson (WH) and IDW are some of the most commonly used reconstruction 

techniques in remote sensing. Conceptually, SG is a piece-wise regression procedure while WH is based on the minimization of a 

cost function describing the balance between fidelity and roughness. While SG and WH are curve-fitting techniques, IDW is a 

deterministic spatial interpolation technique in which values assigned to unknown points are calculated with an average, weighted 

by the inverse of the distance to each neighboring known point (Daly et al., 2002) [5]. As noted by Kandasamy et al. (2013) [19], 

accuracy of SG and WH are significantly affected by the percentage of missing observations before reconstruction. Specifically, 

SG requires an a priori smoothing parameter and window size, which are assumed to be fixed while for WH, a user specified 

smoothing parameter is necessary to control the balance between fidelity and roughness. Vegetation index records are dynamic 

and as such it would be expected that multiple parameters and/or hyper-parameters would be required to characterize its 

variability. Consequently, a model that is driven by one (e.g. WH) or two (e.g. SG) parameters may not account for the full 

changes in location, variability, and shape that do occur in physical space and time (Weiss et al., 2014) [38]. An adaptive SG 

routine that allows the smoothing parameters to vary according to optimization criteria has been suggested by Chen et al. (2004) 
[7]. Further improvements have been suggested to overcome the challenge of over-smoothing or persistent roughness, but tend to 

perform better with pixel-level quality information characterized with large persistent good quality data. Full Bayesian inference 

is very flexible and does not require subjective user input and is particularly recommended for persistent large gaps with potential 

outliers in a long-term time series vegetation index record (Katzfuss and Cressie, 2011) [21]. Unfortunately, full Bayesian inference 

is computationally more intensive than other techniques and has therefore not been widely used (Pinzon and Tucker, 2014) [29]. 

Maximum likelihood techniques have been successfully adopted to identify optimal parameters to reduce computational 

constraints (e.g. empirical Bayes) improving feasibility (Pinzon and Tucker, 2014) [29]. 

This study considers an approximate Bayesian inferential procedure designed for latent Gaussian models to reconstruct long-term 

Earth observation records that is flexible and efficient (Rue et al., 2009) [32]. The Markov chain Monte-Carlo (MCMC) model 

convergence limitation, which accounts for most of computational demand, was overcome using an Integrated Nested Laplace 

Approximations (INLA) algorithm that utilizes sparse precision matrices. Physical time series components (trend, seasonal, and 

cyclical) are adjusted in an additive way using latent time series functions and pixel-level predictive distributions extracted as the 

unbiased estimate of the missing values. 

The paper is organized as follows: In section 2.1, EVI2 is described; in sections 2.2 and 2.3, a brief theoretical background of the 

Bayesian time series model using INLA is presented, and the adaptive SG routine for gap-filling and smoothing Earth observation 

data for comparison is briefly presented in section 2.4. An overview of the analytical methods used to compare the techniques is 

provided in sections 2.5 and 2.6. Results of the inter-comparison are provided in section 3.1 and 3.2, followed by a discussion of 

the results and conclusion in sections 4 and 5, respectively. 

 

2. Data, Processing and Methods 

2.1 Vegetation Index & Phenology (VIP) Lab Version 3 Enhanced Vegetation Index 2 (EVI2) 

We used the VIP-EVI2 record for comparison, given its potential advantage over NDVI for biophysical modeling and persistent 

data gaps that remain in the record after pre-processing. The data can be downloaded at 

http://vip.arizona.edu/viplab_data_explorer.php. VIP-EVI2 is a multi-sensor product that is partially atmospherically corrected 

and is available globally at a 7-day, 15-day and monthly time steps from 1981 to present at 0.05° (~5.6 km at the equator) spatial 

resolution (Jiang et al., 2008) [17]. For purposes of this study, 15-day VIP-EVI2 version 3 data from 1982-2011 was used. At the 
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time of reconstruction, data analysis and writing the manuscript, a newer version of VIP-EVI2 became available, but since the 

purpose of this manuscript was to demonstrate the improved accuracy and lower computational demands of a Bayesian smoothing 

and gap-filling technique, and not the dataset itself, we retained version 3.0. Like MODIS, VIP-EVI2 includes pixel reliability 

(PR) bands that characterize the surface reflectance state, condition of the atmosphere and other useful information about each 

pixel (Didan, 2014) [6]. PR is indexed from 0 to 7 denoting best to worst data quality respectively. In its native form, Inverse 

Distance Weighting and Linear Interpolation (IDW) are used to reconstruct the record in order to reflect a continuous phenology 

curve (Didan, 2014) [6]. However, in this study, pixel level artificial gaps were created for data with corresponding PR>1, because 

such pixels were significantly affected by clouds, aerosols, dust, Rayleigh scattering, and other noise. This resulted in large, 

persistent and irregularly spaced data gaps beyond the ability of the smoothing and gap-filling methods evaluated in this study. So, 

these gaps were partially filled before the assessment using the MODIS filtering algorithm proposed in Xiao et al. (2003) [40] ; 

Marshall et al. (2016) [20] and adopted by Opiyo et al. (2013) for the tropics. The resulting pixel level percentage records available 

after filtering, but before applying gap-filling and smoothing techniques is provided in Figure 1. For the purpose of this study, the 

native gap-free record will be referred to as IDW-EVI2 while the record with missing bad-quality data referred to as VIP-EVI2. 

  

 
 

Fig 1: The percentage of data available after filtering, but before applying gap-filling and smoothing. 
 

Further details on the dataset can be found in Rocha and Shaver (2009) [31]. EVI2 is derived from the following equation 

 

                  (1) 

  

2.2 Reconstruction with Bayesian time series model using INLA 

Vegetation index records can be classified as a hierarchical Gaussian process with linear predictor 

 

 ,                  (2)  

 

Where  represents the linear effects of covariates  (e.g. temperature, precipitation etc.),  are non-linear functions of the 

covariates  (e.g. trend, seasonal, and cyclic effects) used to relax the linearity of the process, and  are unstructured terms. This 

type of model is considered as a special case of the more general class of latent Gaussian models for which approximate Bayesian 

inference can be performed using Integrated Nested Laplace Approximations (INLA). 

Latent Gaussian models are considered as a sub class of structured additive regression models, in which the predictor can be 

expressed as a function of linear and nonlinear effects of the covariates. The vegetation index record  in a given pixel is assumed 

to belong to an exponential family where the mean  is linked to a structured additive predictor  through a link function g

.  

In this study, trend, seasonal, and cyclic terms are added to relax the linearity of the long-term time series vegetation index record. 

For instance, physical long-term trend effect is developed from a sequence between one and the record length. In addition, 

seasonal annual (short-term) variability is created and adjusted for by replicating between 1 and 12 each twice (15a and 15b) 

repeating the resulting sequence number of study years times. Also, long-term cyclic component adjusting for potential climate 

variability and change effect is developed from a replication between one and number of study years each repeated number of 

annual records times. The model formula is then expressed as follows; 

 

  
 

Where  is the model intercept, , ,  are the trend, season, and cyclic covariates respectively, n.season and n.cyclic are to be 

determined based on the short term and long term seasonal patterns of the process which for this study were specified as 12 and 30 

respectively while the model season is as provided by default with INLA.  
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An autoregressive model of order 1 ( ) for the Gaussian process  is defined as  and 

autocorrelation between neighboring outcomes say , , and  is expressed such that 

 

                    
 

Where   for . The model for seasonal variation for periodicity say  for the random vector 

,  is obtained assuming that the sums  are an independent Gaussian process with precision  and the 

density for  is derived from the  increments as; 

 

                   
 

Where  and  is the structure matrix reflecting the neighborhood structure of the model. 

The terms are collected in a latent field  and assigned Gaussian priors such that the resulting model can be viewed as 

a latent Gaussian model. The posterior marginal of each element  of the latent field can be expressed by; 

 

                  
 

Where, the vector  denotes the hyper parameters of the model including those defining prior distributions. Applying the INLA 

methodology, the marginals are estimated by combining an analytical approximation with numerical integration (Rue et al., 2009) 
[32]. The posterior distribution for bad-quality data can be obtained by integrating out Equation 7 

 

                   
 

The mean of the posterior distribution  is extracted and used as the unbiased estimator to the missing/bad-quality data. 

The Bayesian time series procedure will be referred to as INLA method while reconstructed record using the technique referred to 

as INLA-EVI2.  

 

2.3 Adaptive Savitzky-Golay Filtering technique 

Performance evaluation of the Bayesian time series model was compared to the adaptive Savitzky-Golay (SG) routine proposed 

by The adaptive SG has been widely used to fill MODIS data. The function was implemented using the MODIS package in R. As 

in other reconstructions, padding was added at the beginning and end of the time series, so that smoothing and gap-filling could be 

performed on the tails. For the remainder of this paper, the reconstructed record using the SG procedure will be referred to as SG-

EVI2. 

 

2.4 Gap-filling and smoothing technique (global inter-comparison) 

INLA-EVI2 was compared to the SG-EVI2 and IDW-EVI2 both globally and locally. The global inter-comparison was made by 

assessing whether IDW-EVI2 (reference record), INLA-EVI2 and SG-EVI2 were from an identical statistical distribution. The 

magnitude of departure from equality was measured using the distance statistic (D) two sample Kolmogorov-Smirnov (K-S) test. 

In addition, the ability of the SG-EVI2, INLA-EVI2, and IDW-EVI2 to produce consistent records was evaluated using long-term 

trend analysis based on a non-parametric Thiel-Sen (T-S) regression (Fensholt and Proud, 2012) [9] masked for significance at 

alpha=0.05 estimated using a seasonally corrected Mann-Kendall trend test. 

 

2.4.1 Goodness-of-fit test with two-sample Kolmogorov-Smirnov test  

The two-sample Kolmogorov-Smirnov (K-S) test was employed to assess degree of similarity between IDW-EVI2 (reference 

record), SG-EVI2 and INLA-EVI2 time series records. It is based on a statistical distance statistic (D) procedure involving two 

sample records, with a low value of D statistic (p-value > 0.05), suggesting increased accuracy of the method. High value of D (D 

> 0.5) tended to produce low p-values (p-value < 0.05) suggesting varied statistical distribution. The non-parametric technique is a 

widely used statistical procedure that compares two empirical continuous distribution functions. The D statistic is computed from 

the maximum distance between the two empirical distributions based on the ranks. Although the test analyzes the actual data, it is 

equivalent to analysis of ranks which tend to be robust and desirable when the underlying statistical distribution of the records is 

not well understood. 

 

2.4.2 Long-term Trend Analysis with Theil-Sen Regression  

The ability of the smoothing techniques to produce consistent long-term time series records was evaluated using the Theil-Sen (T-

S) regression approach. It computes pairwise slopes of all datapoints and computes the median slope of those values. The median 

slope value becomes unbiased slope estimate.  

 

2.4.3 Mann-Kendall Slope Significance Testing 

Statistical significance of the T-S regression slope estimates was evaluated using the Mann-Kendall (M-K) test. Slope significance 

with M-K test was considered due to its flexibility when the record is suspected to be non-linear with potential outliers. It is a non-

parametric distribution free test for monotonic trends and correlation analysis. The test statistic is then provided by the number of 

positive differences minus the number of negative differences (Verbesselt et al., 2010) [35]. A positive test statistic implies that 

observations obtained later in time tend to be larger than observations made earlier, while a negative test statistic implies that the 
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observations made later tend to be smaller than those made earlier (Tian et al., 2015) [35]. For every test statistic, a probability 

value was extracted and used to mask T-S slope estimates for significance at alpha=0.05.  

 

2.5 Gap-filling and smoothing technique (local inter-comparison) 

The new smoother was compared to the optimization routine locally (subset of pixels) using a newly developed database of 1,459 

in situ LAI measurements for major field crops (alfalfa, barley, canola, cotton, garlic, maize, onion, pasture, potato, rice, soybean, 

sugar beet, and wheat) on five continents (Asia, Australia, Europe, North America, and South America). The database was 

compiled from several sources of LAI measurements made using destructive and non-destructive (optical) methods spanning the 

evaluation period. NDVI and other vegetation indices are widely used to compute LAI in global change studies (Fensholt et al., 

2004; Gitelson et al., 2014; Potithep et al., 2010; Wang et al., 2005) [10, 12, 30, 22], so Landsat reflectance data (30 m resolution) was 

later processed to compute NDVI and other vegetation indices, and paired with the in situ LAI data to evaluate the universality of 

the vegetation index-LAI relationship. Further details on this dataset can be found in Kang et al. (2016) [20, 23]. 

Since the relationship between in situ and coarse resolution vegetation indices and LAI is typically non-linear (Asrar et al., 1992; 

Myneni et al., 2002; Friedl et al., 1995; Gutman and Ignatov, 1998; Sellers, 1985) [1, 25, 11, 13], Landsat EVI2 pixels within each 

IDW-EVI2 pixel were used to downscale IDW-EVI2, SG-EVI2, and INLA-EVI2 data using the vegetation fraction (FC) 

procedure suggested by Hwang et al. (2011) [15]. Unlike the vegetation index-LAI relationship, the vegetation index - FC 

relationship is quasi-linear; meaning FC estimated with a coarse resolution pixel is approximately equal to the average of FC 

estimating from corresponding higher resolution pixels. In Hwang et al. (2011) [15], this relationship was used to downscale 

MODIS (250 m) NDVI with Landsat NDVI. The technique is ratio-based and parameterized for flat and complex terrain. Since 

the LAI measurements were retrieved from large and flat agroecosystems, we used the simple proportionality formula for each 

data pair to convert IDW-EVI2 to downscaled (30 m) FC for comparison with in situ LAI: 

 

α = FC, Landsat / EVI2Landsat                  (8) 

 

Where α is the proportionality constant, FC, Landsat is the vegetation fraction computed from Landsat EVI2, and EVI2Landsat is EVI2 

derived from Landsat top of atmosphere reflectance. We computed FC for Landsat with the formula developed for the MODIS 

Evapotranspiration Model (MOD16) 

 

FC, Landsat = (EVI2 – EVI2min) / (EVI2max – EVI2min)                 (9) 

  

Where EVI2min equals 0.05 and represents EVI2 for bare soil (LAI→0) and EVI2max equals 0.95 and represents EVI2 for dense 

vegetation (LAI→∞). IDW-EVI2 FC was computed by multiplying IDW-EVI2 by the proportionality constant. In some cases, 

more than one Landsat pixel fell within an IDW-EVI2 pixel in space and time. In these cases, FC, Landsat values were averaged 

before downscaling. In order to compare SG-EVI2 and INLA-EVI2, Landsat-LAI pairs were removed and then the corresponding 

time series were smoothed and gap-filled. Standard linear regression statistics (coefficient of determination-R2 and Root Mean 

Squared Error-RMSE) were computed from the raw IDW-EVI2 data, SG-EVI2, and INLA-EVI2 versus LAI. Transformations 

were deemed unnecessary, because the data exhibited near linear relationships (not shown).  

 

3. Results 

3.1 Global inter-comparison 

Pixel level means and standard deviations were obtained tocompare the distribution of SG-EVI2 and INLA-EVI2 to IDW-EVI2 

(Figure 2). SG-EVI2 tended to over-predict IDW-EVI2, while INLA-EVI2 tended to under-predict IDW-EVI2 as shown in Figure 

2. Although the absolute magnitudes were different, INLA-EVI2 showed a higher level of agreement with IDW-EVI2 in terms of 

the overall distribution of estimated values than SG-EVI2. The greatest difference between the SG-EVI2 and INLA-EVI2 was at 

the extreme Northern latitude in which the mean predicted values appear lowest and most variable (Figure 3). 

The two sample K-S test was used to assess whether INLA-EVI2 and SG-EVI2 had identical distributions to IDW-EVI2 (in terms 

of medians, variability, and shape). The null hypothesis is that the IDW-EVI2 and SG-EVI2 or INLA-EVI2 was sampled from 

populations with identical distributions. The magnitude of the D statistic expresses indirectly, the degree of violation of the null 

hypothesis with higher values (p < 0.05) suggesting that the two reconstructed records are from different statistical distributions. 

Overall goodness-of-fit on a monthly basis for SG-EVI2 and INLA-EVI2 are shown in Figure 4 and Figure 5, respectively. In 

each case, pixel level K-S estimates with p-value < 0.05 were masked for display purposes. As shown in Figures 4 and 5, the 

patterns in correlations between IDW-EVI2 (reference), SG-EVI2, and INLA-EVI2 based on the D statistic were fairly identical. 

Nevertheless, INLA-EVI2 and IDW-EVI2 appears to be more similar as suggested by lowest D statistic. 
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Fig 2: The Pixel–level means of A (IDW-EVI2), B (SG-EVI2) and C (INLA-EVI2) 

 

 
 

Fig 3: The Pixel–level standard deviations of the VIP-EVI2, A = EVI2-IDW, B = SG-EVI2 and C = INLA-EVI2. 

 

The highest level of correlation was found at mid-latitudes throughout much of the year, while average correlations were found 

during green-up and summer months at northernmost latitudes (March-April-May and June-July-August) and the poorest 

correlations were observed during brown-down (fall) months at northernmost latitudes (October-January).  
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Fig 4: The goodness-of-fit test masked for D > 0.5 based on a two sample K-S test on a per-pixel for the IDW-EVI2 versus SG-EVI2. 

 

Overall, INLA provided better model fit with over 70% of pixels reporting D <0.2 while the SG method produced D between 0.1 

and 0.4 and a majority (D > 0.5) masked to express varied distribution. D > 0.5 (varied distribution) was most prevalent during 

boreal and austral summer months (October-February) for both the SG-EVI2 and the INLA-EVI2 approach even though the 

degree of variability appears highest with the SG-EVI2.  

The T-S regression model masked for significance using the M-K test was used to study the annual trends in VIP-EVI2 with each 

technique (Figure 6). Positive values indicate a greening trend, while negative values indicate a browning trend. Overall, greening 

trends were more prevalent at mid-latitude and least significant at extreme high latitudes. INLA-EVI2 and IDW-EVI2 were closer 

in terms of trend magnitude and direction than SG-EVI2 and IDW-EVI2. The greatest difference in the techniques appear to be in 

their degree of sensitivity to weak browning/greening trends in which SG appear to be least sensitive as expressed by large 

number of insignificant trends at extreme high latitudes.  

 

3.2 Local inter-comparison 

Of the original 1,459 Landsat-LAI pairs, only 319 samples remained for comparison due to overlap between AVHRR and Landsat 

pixels in space and time. Initially, LAI and downscaled IDW-EVI2 statistics were computed for the pooled (all crops) data, but 

this led to poor and insignificant relationships, so statistics were computed instead on a per-crop basis. On a per-crop basis, 

sample sizes were small, so additional data points for some crops were omitted from the analysis, including: barely, canola, 

cotton, and rice. In order to increase the sample sizes of the remaining crop, two aggregations were made: alfalfa was included 

with pasture and garlic, onion, potato, and sugar beet were combined to form a “roots and tubers” category. After these processing 

steps, 225 samples remained for analysis. Based on the summary statistics used for the global comparison, INLA-EVI2 again 

showed the strongest correlation with LAI compared to SG-EVI2 and IDW-EVI2 (Table 1). For maize, pasture, roots and tubers, 

soybean, and wheat, INLA explained an additional 2%, <1%, 3%, 1%, and 1% of LAI variance than SG-EVI2, respectively. IDW 

showed minor improvements over SG-EVI2 for Maize (ΔR2=0.01) and Roots and Tubers (ΔR2=0.02), and under-performed INLA 

with the exception of wheat (ΔR2=0.02). 
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Fig 5: The goodness-of-fit test masked for D > 0.5 based on a two sample K-S test on a per-pixel for the IDW-EVI2 versus INLA-EVI2. 

 

 
 

Fig 6: Annual Thiel-Sen regression slope: A (IDW-EVI2); (SG-EVI2); and C (INLA-EVI2) between 1982 and 2011 masked for significance 

 ( 0.05). 

 

As illustrated in Figure 7 for soybean, INLA consistently reproduced strong linear relationships over a similar range as IDW-EVI2 

compared to SG-EVI2. SG-EVI2 had a lower dynamic range, which lead to a steeper slope and small, but lower correlations with 

in situ LAI.  
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Table 2: Summary statistics (N = Sample size, R2 = coefficient of determination, and RMSE = root mean squared error) from in situ Leaf Area 

Index versus linearly fitted downscaled IDW-EVI2, SG-EVI2, and INLA-EVI2. The highest performing approach is bolded. 
 

Crop N Smoother R2 RMSE 

Maize 108 IDW 0.63 0.934 

  
SG 0.62 0.944 

  
INLA 0.64 0.926 

Pasture 35 IDW 0.50 0.558 

  
SG 0.51 0.554 

  
INLA 0.51 0.552 

Roots and Tubers 19 IDW 0.91 0.545 

  
SG 0.89 0.604 

  
INLA 0.92 0.539 

Soybean 40 IDW 0.72 0.697 

  
SG 0.74 0.669 

  
INLA 0.75 0.651 

Wheat 23 IDW 0.52 1.091 

  
SG 0.49 1.128 

  
INLA 0.50 1.117 

 

 
 

Fig 7: Scatter diagrams of in situ Leaf Area Index (LAI) for soybean versus downscaled IDW-EVI2 fraction (FC) for each smoothing technique: 

A (IDW-EVI2); B (SG-EVI2); and C (INLA-EVI2). LAI is expressed in units of m2 m-2. 

 

4. Discussion  

This study examined the performance of a new technique to gap-fill and smooth Earth observation based long-term vegetation 

records with a Bayesian time series regression model using INLA. The temporal autocorrelations (trend, seasonal, and cyclical 

components) are adjusted for in an additive way which is unique to gap-filling and smoothing global Earth Observation based 

vegetation index records. The model was tested on the VIP-EVI2 version 3 record. The technique is designed to be efficient and 

able to handle time series where the underlying processes are not well known and contain several discontinuities and outliers. The 

performance of the Bayesian time series model with INLA (INLA-EVI2) was compared to the smoothed and gap-filled data 

provided by the VIP-EVI2 distributor (IDW-EVI2) and another commonly used technique by the remote sensing community (SG-

EVI2). For both scales of analysis, INLA-EVI2 produced the highest correlations to IDW-EVI2 and in situ data. 

Overall, the Bayesian time series model with INLA underestimated IDW-EVI2, as might be expected with posterior and/or 

predictive means of the data from both good quality and poor quality observations (missing values). However, the study 

considered predictive modes given their potential unbiasedness when reconstructing vegetation index data whose values tend to be 

lower than the true values due to cloud contamination. Unlike INLA-EVI2, SG-EVI2 tended to overestimate IDW-EVI2, which 

can be attributed to the automated optimization routine employed by the approach. According to Kandasamy et al. (2012) [19], the 

upper envelop approach in the SG-EVI2 tends to overestimate vegetation index values in regions that are least affected by 

atmospheric cloud cover, because it preserves the upper envelope (VIP-EVI2 maxima) of the time series. Since the optimization 

routine produced a lower dynamic range than INLA-EVI2, minima were higher as well. In the global comparison, over 70% of the 

INLA-EVI2 and IDW-EVI2 goodness-of-fit test resulted in D < 0.5. While the distribution of D statistic for SG-EVI2 and IDW-

EVI2 was comparable, it tended to result in higher D’s suggesting different statistical distributions. The level of disagreement 

based on the D statistic (D > 0.5) was highest at northern extremes during winter and least during summer months at mid-

latitudes. The distribution of significant D statistic (disagreements not attributable to chance) was considerably higher in SG-

EVI2/IDW-EVI2 than INLA-EVI2/IDW-EVI2. Coincidentally, the level of agreement between predicted values and 

corresponding IDW-EVI2 appear to decrease as the percentage gaps in VIP-EVI2 increases. The finding is consistent with 

Rusticus and Lovato (2014) [33] who noted that the overall power of equivalence testing is strongly influenced by sample size. The 

Lowest agreement was noted during winter months when the percentage of good quality data was lowest and highest during 

summer months when good quality data was most abundant. The impact of percentage gaps on reconstruction was more severe 

and heterogeneous for SG-EVI2 than INLA-EVI2, which is confirmed by Kandasamy et al. (2013) [19], who observed that among 

the techniques they compared, SG was more sensitive to the number and length of data gaps. Seasonality was less apparent in the 

southern hemisphere, which was likely due to the greater proportion of water (i.e. less continentally).  

A non-parametric regression model based on the T-S slope masked for significance with a seasonal Mann-Kendall trend test was 

used to determine annual trends for each smoothing technique. The technique was employed to circumvent the independence 
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assumption and potential effects of outliers, which in the presence of serial autocorrelation, tends to pose a challenge to matrix 

algebra. Despite some regional differences in areas at high latitudes with many data gaps, there was a high level of agreement 

between annual trends produced from the smoothing techniques compared to IDW-EVI2 in this study and those produced from 

GIMMS and MODIS NDVI records in Fensholt et al. (2012) [9] and in Marshall et al. (2016) [20]. Each technique produced 

positive (green-up) trends over much of the globe. Generally, the greening has been attributed in previous studies to an increase in 

and extension of primary plant production (when light and moisture are not limiting factors) in response to global warming. 

Despite T-S slope estimates associated with the optimization routine being consistently higher (depicting a high rate of greening), 

INLA-EVI2 showed more brown-down/green-up trends at extreme latitudes, while SG-EVI2 showed more negative (browning) 

trends which are slightly higher in absolute terms. Marshall et al. (2016) [20] confirms the INLA-EVI2 results, revealing that trends 

can be heterogeneous in both space and time, due to droughts, fires, pests, land cover change, and climate-land feedbacks. In 

addition, discontinuities in the data record, transitions in annual trends, and differences in the trend analysis approach used, can 

make comparisons particularly difficult at these latitudes. 

Unique to this study, the smoothing techniques developed from coarse resolution Earth observation data were compared using 

ground-based data. Although the final in situ LAI data used for the comparison had a small sample size and poor geographical 

distribution, they corroborate the global comparison. FC computed from downscaled INLA-EVI2 led to better association with in 

situ LAI and FC computed from downscaled unsmoothed data than FC computed from the downscaled optimization routine or 

IDW-EVI2. Bayesian time series model with INLA-EVI2 appear to be less impacted by outliers and discontinuities than the SG-

EVI2, leading to a spread consistent with IDW-EVI2. With the exception wheat, INLA-EVI2 performed as well if not better than 

the IDW-EVI2 and SG-EVI2 with LAI, i.e. higher R2 and lower RMSE. The high correlations for roots and tubers should be 

regarded with caution, because the small sample size and leveraging in the residual plot (not shown) is most likely inflating the 

strength of the relationship. The moderate to high correlations across the crops and techniques suggests that the downscaling 

method proposed by Hwang et al. (2011) [15] and the in situ database created by Kang et al. (2016) [20, 23] can be used in 

conjunction with other in situ databases, such as the woody plant database (Iio et al., 2014) [16] in the future, to evaluate the 

updated VIP version 4 and other records (e.g. MODIS) with various gap-filling and smoothing approaches.  

The primary disadvantage of full Bayesian techniques especially using MCMC and a reason they have not been widely used for 

smoothing in the remote sensing community, is that they are computationally more intensive. The findings reveal desirable 

benefits that come with full Bayesian smoothing (e.g. being less severely impacted by the large fraction and length of missing 

data) compared to the commonly used curve-fitting techniques. INLA approach is limited to latent Gaussian models (Rue et al., 

2009) [32], unlike MCMC methods which are very general, flexible and can effectively be applied to nearly any model. However, 

in some cases, it is difficult to assess MCMC convergence to the target posterior distribution, resulting to inference from a false 

positive posterior distribution. It is our view that the main benefit of the new gap-filling and smoothing procedure is 

computational, a short cut to full Bayesian inference with simulation based routines which is near impossible for complex models 

despite having desirable properties. 

 

5. Conclusion 

The research presented in this study highlights the important role a full Bayesian time series model with INLA can play in 

reconstructing Long-term Earth observation based vegetation index records where the underlying processes are not well 

understood and contain several outliers and discontinuities. Specifically, this study showed, using AVHRR-MODIS fused records 

and in situ data that a full Bayesian time series smoothing procedure is less severely impacted by missing data than the commonly 

used SG procedure. 

Performance assessment with K-S test suggests more comparable findings between SG-EVI2 and INLA-EVI2 during summer but 

more different estimates during winter. This is reflected by the high proportion of pixels with high distance statistic (D > 0.5) 

which indicates high level of disagreement with IDW-EVI2 (reference record). In particular, such pixels were more erratic during 

winter for SG-EVI2 but were fewer and fairly distributed across the months of the year for INLA-EVI2. The good performance of 

INLA-EVI2 was also demonstrated by its ability to detect long-term annual trends. While annual trend analysis with INLA-EVI2 

and IDW-EVI2 were comparable across the globe, trends with SG-EVI2 were different in regions negatively impacted by 

atmospheric contaminations. Such Poor and largely non-significant long-term annual trends for SG-EVI2 were noted in extreme 

high latitude (e.g. Canada, Russia), Brazil, parts of Australia and other regions that are either water or largely Forest ecosystem 

(e.g. Congo). The good performance of INLA-EVI2 was further validated by its ability to correctly estimate ground observed LAI 

data taken for major crop areas. Of the five major crop areas (maize, pasture, roots and tubers, soybean, and wheat) considered, 

INLA-EVI2 predicted the in situ LAI data more precisely than the alternative records (SG-EVI2 and IDW-EVI2) for Maize, 

pasture, roots and tubers, and soybean, producing highest R2 and lowest RMSE.  

Therefore, we suggest considering Bayesian time series model under INLA to gap-fill and smooth long-term Earth observation 

based vegetation index. The procedure is highly flexible for a large class of statistical models (http://www.r-inla.org/). Alternative 

latent models available under INLA can also be tested for the time series components to assess performance difference in terms of 

improved accuracy. However, if computational resources are heavily restricted, we recommend IDW and linear interpolation due 

to its fairly good performance. However, SG procedure could be adopted in regions less impacted by atmospheric contamination 

given its relatively high accuracy, simplicity and computational efficiency. 
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