

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE) 4^{TH} YEAR 2^{ND} SEMESTER 2017/18

MAIN REGULAR

COURSE CODE: SCH 408

COURSE TITLE: Statistical Thermodynamics

EXAM VENUE: STREAM: (BED SCI)

DATE: EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- 1. Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE (30 MARKS) COMPULSORY

1.	a) Define the following terms in relation to statistical thermodynamics	[4 marks]
	i) Energy level	
	i) Quantum states	
	ii) Microstates	
	iii) Degeneracy	
b)	Distinguish between statistical thermodynamics and classical thermodynamics	[2marks]
c)	Write a general expression for determining the number of microstates where there is degeneracy	
	explaining the various quantities	[5marks]
d)	What determines the most probable distribution of particles?	[1mark]
e)	State the laws of phenomenology	[4 marks]
f)	order to find and evaluate degeneracy, different models are used to represent the system of interest	
	Explain four such models	[8marks]
g)	i) By illustration determine the Stirling's approximation of N! where N is the number of particles	
		[3marks]
	ii) Explain the importance of Stirling's approximation	[3marks]
	QUESTION TWO (20 MARKS)	
a)	Consider a system of 4 coins and 2 states available for each (head and tail). The coins are identical but	
	distinguishable.	
	i) Use an illustration to show the possible distributions	[5marks]
	ii) How many distinct outcomes are there?	[1mark]
	iii) How many distributions are?	[1mark]
	iv) What is the most probable distribution	[2marks]
b)	i) Use the Lagrange multiplier method to show that population of particles in an energy level can be	
	given as:	[10 marks]
	$n_i = g_i e^{-\alpha} e^{-\beta \varepsilon_i}$	
	ii) State the importance of Lagrangian method of undetermined multiplier	[1mark]

QUESTION THREE (20 MARKS)

- a) i) State the assumptions of the Maxwell-Boltzmann statistics [5marks]
 - ii) Explain the significance of the Maxwell-Boltzmann distribution law [2marks]
- b) Calculate the vibrational partition function for I_2 at 25 $^{\circ}$ C [3 marks]
- c) Evaluate the translational partition function for Ar confined to a volume of 1000 cm³ at 298 K. Take mass of Ar = 6.64×10^{-26} kg; Planck's constant = 6.626×10^{-34} Js; Maxwel-Boltzmann constant = 1.38×10^{-23} J/K
- d) Given that $\beta = \frac{1}{KT}$; $E = -N \left(\frac{\partial lng}{\partial \beta}\right)_V$ and Nk = R show that [6 marks]

$$E = RT^2 \left(\frac{\partial lng}{\partial \beta} \right)_V$$

QUESTION FOUR (20 MARKS)

- e) Show that Helmotz-free energy is given by the equation $A = -TNK \ln 3$ [4 marks]
- f) Consider three particles a,b,c to be distributed among 4 energy levels, with total energy E = 3 quanta.
- i) Use an illustration to show how many ways the particles can be distributed [10 marks]
 - ii) Determine the total number of microstates in each distribution [3marks]
- g) Write the general schrödinger wave equation explaining the various terms in the equation [3 marks]

QUESTION FIVE (20 MARKS)

h) Show that the translational partition function is given as [7marks]

$$3 trans = \frac{(2\pi mkT)^{3/2} V}{h^3}$$

i) Determine the translational partition function for argon gas confined to a volume of 2.24×10^{-2} m³ and at temperature of 273K. Take mass of Ar = 6.64×10^{-26} kg; Plank's constant = 6.626×10^{-26} kg; Plank's constant =

 10^{-34} Js; Maxwel-Boltzmann constant = 1.38 x 10^{-23} J/K [4 marks]

- j) Calculate the vibrational partition function of iodine at 300K given that the vibrational frequency of iodine is 214.57 cm^{-1} . Take Plank's constant = $6.626 \times 10^{-34} \text{ Js}$; Maxwel-Boltzmann constant = $1.38 \times 10^{-23} \text{ J/K}$; speed of light = $3.0 \times 10^8 \text{ m/s}$ [4 marks]
- k) Show that the internal energy, E relates with partition function at constant volume as shown below [5 marks]

$$E = -N \left(\frac{\partial lng}{\partial \beta} \right)_V$$