JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES BACHELOR OF SCIENCE EDUCATION WITH IT THIRD YEAR FIRST SEMESTER EXAMINATIONS
 SCH 411: Organic Strereochemistry
 UNIVERSITY EXAMINATIONS: 2018/2019 ACADEMIC YEAR

ANSWER ALL QUESTIONS IN SECTION A AND ANY TWO QUESTIONS IN SECTION B
 SECTION A: ANSWER ALL QUESTIONS

QUESTION 1 (30 MARKS)

a) Define the following terms;
i) Diatereomerism
ii) Homotopicity
iii) Enatiomerism
iv) Stereogenicity
v) Molecular geometry
b) Give the CIP names of the following stereoisomers.
(5 marks)

c) Give the 3D-structures of the following stereoisomers;
i) (2S)-2-ethylpentane
ii) (2S,3R)-2,3-dichlorohexane
iii) (3R)-octan-3-ol
iv) ($2 R, 3 S$)-2,3-dibromononanal
d) Complete the following reactions;
i)

ii)

SECTION B (40 MARKS):

ANSWER ANY TWO QUESTIONS FROM THIS SECTION:
 EACH QUESTION CARRIES 20 MARKS

QUESTION 2 (20 marks)

a) Consider the following pair of structures; are they enantiomers or two molecules of the same compound in different orientations? Explain your answer.

b) (2S)-2-iodobutane has a specific rotation, $[\alpha]^{24}{ }_{\mathrm{D}},=22.4^{\circ}$. Interpret the observed result.
c) At $24^{\circ} \mathrm{C}$, a sample of (2S)-2-iodobutane in (b) above was put in a 1 dm sample vial of solution of $1.0 \mathrm{gml}^{-1}$ and showed a specific rotation of $+3.975^{\circ}$;
i) What is the optical purity of the sample?
ii) What is the enatiomeric excess?
d) Using examples, explain the following molecular geometries;
i) Tetrahedral
ii) Trigonal planar

QUESTION 3 (20 marks)

a) In a chronological order, describe the CIP system of naming enantiomers.
b) Draw the Fischer projection of L-(+)-tartaric acid and identify the stereocenter
c) Briefly discuss the biological significance of chirality.
d) Give and name the 3D-structures of product(s) of the following reactions
i) $\mathrm{CH}_{2}=\mathrm{CHOH}+\mathrm{Cl}_{2} \rightarrow$
ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{Br}_{2} \rightarrow$

QUESTION 4 (20 marks)
a) Give a brief history of the origin of stereochemistry
b) Draw all the stereoisomers of $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$
c) Discuss the energetics of the conformational isomers of cyclohexane
d) Which of the following are chiral and, therefore, capable of existing as enantiomers? (6 marks)
i) 1,3-Dichlorobutane
v) 2-Bromobicyclo[1.1.0]butane
ii) 1,2-Dibromopropane
vi) 2-Fluorobicyclo[2.2.2]octane
iii) 1,5-Dichloropentane
iv) 3-Ethylpentane

QUESTION 5 (20 marks)

a) Draw a schematic diagram representing a polarimeter (5 marks)
b) Discuss the kinetic resolution technique of separating enantiomers
c) Calculate the observed rotation of a solution of 0.5245 g of (S)-1-amino-1phenylethane diluted to a volume of 10.0 ml with methanol at $20^{\circ} \mathrm{C}$, using the Sodium D Line lamp and 1.00 dm tube. Specific rotation of this material is: (4 marks)

$$
[\mathrm{a}]_{\mathrm{D}}^{23}=-30.0^{\circ}
$$

d) Consider the reaction below;

How many stereoisomers of the product are possible? Draw them. Are the products optically active?
\mathcal{E}
\mathcal{N}
\mathcal{D}

