JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
$2^{\text {ND }}$ YEAR $1^{\text {ST }}$ SEMESTER 2019/2020 ACADEMIC YEAR
MAIN
REGULAR

COURSE CODE: SPH 203

COURSE TITLE: Mathematical Methods For Physics I

EXAM VENUE:
STREAM: EDUCATION

DATE:
EXAM SESSION:

TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.
a) Distinguish between a sequence and a series.
(2 marks)
b) Prove that the sequence $\left\{a_{n}\right\}=\frac{1}{n}$ is Cauchy.
c) Determine the limit of the sequence $\ln \left(\frac{4 n+1}{3 n-1}\right)$
(2 marks)
d) Find the radius of convergence for the power series defined by $\sum_{k=1}^{\infty} k!(x+10)^{k}$
e) The partition function of a spin- $\frac{1}{2}$ paramagnetic system is given by the exponential function

$$
Z=e^{\left(\frac{g_{s} \mu_{B} B}{2 k_{B} T}\right)}+e^{-\left(\frac{g_{s} \mu_{B} B}{2 k_{B} T}\right)} . \text { Express the equation as a hyperbolic function. }
$$

f) Obtain the derivative of the function $y=\sin 5 x+\ln x^{3}-e^{4 x}+\sum_{k=0}^{\infty} c_{k} x^{k}$
g) By using the method of integration by parts, evaluate $\int_{0}^{N} \ln x d x$ to obtain the Stirling's approximation for a system of N particles.
(3 marks)
h) State the antiderivative form of the fundamental theorem of Calculus.
i) A physical system traces a path defined by the following parametric equations during its motion. $x=2 t^{3}+1$ and $y=t^{2} \cos t$. Determine the gradient function of the path.
j) Calculate the work done when an object is pushed by a force $\vec{F}=(10 \hat{i}+15 \hat{j}) N$ through a

$$
\text { displacement } \vec{s}=(3 \hat{i}+4 \hat{j}) m
$$

k) Define the following terms.
(ii) Basis.
(iii) Asymptotic analysis

1) The unitless equivalents of Pauli spin matrices are given by $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$;
$\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ and $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ where $i=\sqrt{-1}$. Show that the commutation bracket
$\left\lfloor\sigma_{x}, \sigma_{y}\right\rfloor=2 i \sigma_{z}$

SECTION B

Attempt any TWO questions in this section.

QUESTION 2 (20 MARKS)

a)Determine $\lim _{x \rightarrow \infty}\left(\frac{6 x^{2}+5 x+7}{4 x^{2}+2 x}\right)$ using de l'Hô pital's rule.
b) Derive the expression for the vector product $\vec{A} \times \vec{B}$ where $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$;

$$
\begin{equation*}
\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k} \tag{6marks}
\end{equation*}
$$

c) Given $\vec{A}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{B}=3 \hat{i}+2 \hat{j}+\hat{k}$. Find:
(i) $\vec{A} X \vec{B}$
(ii) $\vec{A} \cdot \vec{B}$
(iii) Angle between \vec{A} and \vec{B}

QUESTION 3 (20 MARKS)

a) Apply the concept of integration of rational functions to evaluate

$$
\begin{equation*}
\int \frac{x^{2}+2 x+4}{(x+1)^{3}} d x \tag{6marks}
\end{equation*}
$$

b) A particle described by the wave function $u=\frac{1}{\sqrt{a}} \cos \left(\frac{\pi x}{2 a}\right)$ moves in a one-dimensional potential defined by $V=V_{0} \cos \left(\frac{\pi x}{2 a}\right)$. Calculate the first order energy correction given by $E_{1}=\int_{-a}^{a} u V u d x$
(14 marks)

QUESTION 4 (20 MARKS)

a) Expand $f(x)=\sin x$ in a Taylor series about $\frac{\pi}{3}$
b) Show that the series $\sum_{k=1}^{\infty} a r^{k-1}$ converges to $\frac{a}{1-r}$ if $|r|<1$ and diverges if $|r| \geq 1$
c) A ladder $20 m$ leans against a vertical wall. The foot of the ladder is being drawn away from the wall at the rate of $2 \mathrm{~m} / \mathrm{s}$. How fast is the top of the ladder sliding down at the instant when the foot is 10 m from the wall?

QUESTION 5 (20 MARKS)

a) Use the substitution method to evaluate $\int 3 \cos 3 t d t$
b) The primitive translation vectors of the body centred cubic (bcc) crystal lattice are given by
$\vec{a}=\frac{1}{2} a(\hat{x}+\hat{y}-\hat{z}) ; \quad \vec{a}=\frac{1}{2} a(-\hat{x}+\hat{y}-\hat{z}) ; \quad \vec{a}=\frac{1}{2} a(\hat{x}-\hat{y}+\hat{z})$. Calculate the volume of the
primitive cell using the formula $V_{b c c}=|\vec{a} \cdot \vec{b} \times \vec{c}|$
c) (i) Define a linear map.
(2 marks)
(ii)Let a map T be defined by $T\binom{x}{y}=\binom{x}{-y}$. Show that T is linear.

