

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE & TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

DEPARTMENT OF BIOLOGICAL SCIENCES

UNIVERSITY SPECIAL EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOLOGICAL SCIENCES

4th YEAR FIRST SEMESTER 2019/2020 ACADEMIC YEAR

MAIN CAMPUS - REGULAR

COURSE CODE:	SBI 3431
COURSE TITLE:	Bioinformatics and Computational Biology
EXAM VENUE:	STREAM:
DATE:	EXAM SESSION:
TIME: 2 HOURS	

Instructions:

- 1. Answer ALL questions in Section A and Any two questions in Section B
- 2. Candidates are advised not to write on question paper
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room

SECTION A: SHORT ANSWER QUESTIONS (30 MARKS)

1.	. Describe three different kinds of DNA sequences						
2.	Briefly distinguish the terms homologs, orthologs and paralogs.						
3.	Outline three advantages of evolutionary computation	(3 Marks)					
4.	Describe three hierarchical levels of protein structure						
5.	Explain what is meant by gene ontology. Identify two organizing principles						
	of gene ontology						
6.	6. Define sequence alignment. Describe the difference between local and global alignment						
	(3 Marks)						
7.	Consider the (pairwise) global alignments below resulting from the application of the						
	sider the (pairwise) global alignments below resulting from the application of the rithm Needleman-Wunsch to the sequences S1, S2 and S3 using the following						
	scoring scheme: match=+2; mismatch=-1 and gap=-1.	(3 Marks)					
	S1: CG_AA S1: CG_AA S2: GGTTAA						
	S2: G G T T A A S3: T G T A A S3: T G T _ A A						
8.	8. Distinguish among protein domain, motif and family.						
9.	9. Identify three databases available through Entrez						

10. Based on the data in the table shown below, draw a phylogenetic tree that reflects the evolutionary relationships of the organisms based on the differences in their cytochrome *c* amino-acid sequences and explain the relationships of the organisms. Based on the data, identify which organism is most closely related to the chicken and explain your choice. (3 Marks)

	Horse	Donkey	Chicken	Penguin	Snake
Horse	0	1	11	13	21
Donkey		0	10	12	20
Chicken			0	3	18
Penguin				0	17
Snake					0

THE NUMBER OF AMINO ACID DIFFERENCES IN CYTOCHROME c AMONG VARIOUS ORGANISMS

SECTION B: ESSAY QUESTIONS (40 MARKS).

11. Discuss the basic principle of shotgun genome sequencing, assembly and annotation.

(20 Marks)

- 12. Describe the dot matrix analysis plot method of pairwise sequence alignment. (20Marks)
- 13. Discuss the use of computational biology and bioinformatics in functional genomics and proteomics. (20 Marks)
- 14. Describe the features and importance of NCBI (National Center for Biotechnology Information). (20 Marks)